最好的存储R中数据的格式是保存为".RData"。.RData(也称为.rda文件)是R专属的文件,可以保存海量文件。
.rds(Rds files store a single R object.)和.Rdata(也称为.rda)文件,可以用于以R原生格式存储R对象。与非本地存储方法(例如,write.table)相比,以这种方式保存有多个有点,
- 将数据恢复到R中速度更快(it is faster to restore the data to R)
- 它将 R 特定信息编码在数据中(例如,属性、变量类型等)
使用save()函数保存为RData文件。
save(object1, object2, object3, file="data/file_name.RData")
完成后,在工作目录下将产生一个file_name.RData文件,该文件中包括了你想要保存的变量,后续可以用load()函数加载这个.RData文件,使得这个文件中包含的对象直接导入到R中,只需要通过一个函数,R对象就导入到R中,不需要考虑是否需要进行其他额外的一些设置(对比导出形式为Excel),使用起来非常方便。
注意:这个文件名字中可以编写日期,这样你对这个脚本运行多次,可以带上日期或者其他一些具体的参数。
使用save.image()保存所有文件
如果有多个变量想要保存,使用save函数比较繁琐,因为必须要输入每个变量的名称,可以使用save.image()函数,保存工作目录下的所有变量。比如,
save.image(file="data/project_image.RData")
在当前工作目录下,project_image.RData文件中包含了R脚本中所涉及到的所有变量。【与保存历史的区别,还没有细看这个】
使用load()函数加载文件
加载文件的意思是,将.RData文件读入(导入)到R中,例如,小明给你一个.RData文件,你想要看一下这个文件中有什么内容,是关于什么的数据,你上网搜了下,发现这个文件是R的文件,你需要在R中使用load()函数进行加载,加载之后,你会在RStudio界面的右上方看到这个文件中包含的对象名称和对象的内容,这个时候,你可以在R中直接使用这个对象,进行相关的数据分析。
这个过程,与导入EXcel数据相比,你不需要考虑是否要将数据的标题栏导入到R中,数据的格式会不会发生变化,保存为.RData文件是没有这方面的顾虑的。
#加载R对象
load(file="data/file_name.RData")
#加载某个脚本中获得的 所有R对象
load(file="data/project_image.RData")
使用rm()函数删除R对象
当移除特定变量时,可以使用rm()函数,比如移除R对象object1
rm(object1)
如果想要移除当前工作目录下所有的文件,使用list=ls()
比如,你运行完成一个脚本之后,想要对其进行稍微的修改,然后,再次运行,为了避免不必要的混乱,可以清除当前工作目录下的所有R对象(注意:R对象包括变量,自定义函数)
#相当于clear所有R对象
rm( list=ls() )
注意:一旦删除掉一个变量,将无法恢复!
主要参考: