RData的保存与加载

最好的储存R中数据的格式是保存为.RData。.RData是R专属的文件,可保存海量文件。设想一下,当你在十个不同数据框中进行统计分析时,你可以将统计学习的变量保存为一个文件中,即为ExperimentResults.RData。

保存特定文件save()

使用save()函数保存为RData文件。

# Create some objects that we'll save later
study1.df <- data.frame(id = 1:5, 
                        sex = c("m", "m", "f", "f", "m"), 
                        score = c(51, 20, 67, 52, 42))

score.by.sex <- aggregate(score ~ sex, 
                          FUN = mean, 
                          data = study1.df)

study1.htest <- t.test(score ~ sex, 
                       data = study1.df)

做完统计分析后,可保存当前工作目录下的变量(如study1.df,score.by.sex,study1.htest)为RData文件,可用如下方式进行。

# Save two objects as a new .RData file
#   in the data folder of my current working directory
save(study1.df, score.by.sex, study1.htest,
     file = "data/study1.RData")

完成后,工作目录下将产生一个study1.RData文件,该文件中包括了你想保存的变量,后续可以load()函数进行加载。

保存所有文件save.image()

如果有多个变量想要保存,使用save函数比较繁琐因为必须要输入每个变量名称,可使用save.image()函数保存工作目录下所有的变量。比如,

# Save my workspace to complete_image.RData in th,e
#  data folder of my working directory
save.image(file = "data/projectimage.RData")

现在,projectimage.RData文件包含了当前工作目录下所有的变量。

加载文件load()

加载.RData文件时,使用load()功能。比如,加载之前保存的study1.Rdata文件中的三个变量时(study.df,score.by.sex,study1.htest),可使用以下命令:

# Load objects in study1.RData into my workspace
load(file = "data/study1.RData")

加载当前工作目录下保存的projectimage.RData文件的所有变量时,可使用以下函数:

# Load objects in projectimage.RData into my workspace
load(file = "data/projectimage.RData")

删除文件rm()

使用rm()功能去除当前工作目录下的所有变量,统计分析时,可能会发现工作目录包含了太多并不需要的文件,可能会拖慢电脑运行速度并可能引起干扰。当移除特定变量时,可使用rm()函数,比如,为了移除huge.df的数据框,可使用以下函数:

# Remove huge.df from workspace
rm(huge.df)

如果想要移除当前工作目录下所有的文件,使用list = ls()

# Remove ALL objects from workspace
rm(list = ls())

重点是!!一旦你删除了一个变量,将无法恢复。慎用rm(list = ls())

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值