最好的储存R中数据的格式是保存为.RData。.RData是R专属的文件,可保存海量文件。设想一下,当你在十个不同数据框中进行统计分析时,你可以将统计学习的变量保存为一个文件中,即为ExperimentResults.RData。
保存特定文件save()
使用save()函数保存为RData文件。
# Create some objects that we'll save later
study1.df <- data.frame(id = 1:5,
sex = c("m", "m", "f", "f", "m"),
score = c(51, 20, 67, 52, 42))
score.by.sex <- aggregate(score ~ sex,
FUN = mean,
data = study1.df)
study1.htest <- t.test(score ~ sex,
data = study1.df)
做完统计分析后,可保存当前工作目录下的变量(如study1.df,score.by.sex,study1.htest)为RData文件,可用如下方式进行。
# Save two objects as a new .RData file
# in the data folder of my current working directory
save(study1.df, score.by.sex, study1.htest,
file = "data/study1.RData")
完成后,工作目录下将产生一个study1.RData文件,该文件中包括了你想保存的变量,后续可以load()函数进行加载。
保存所有文件save.image()
如果有多个变量想要保存,使用save函数比较繁琐因为必须要输入每个变量名称,可使用save.image()函数保存工作目录下所有的变量。比如,
# Save my workspace to complete_image.RData in th,e
# data folder of my working directory
save.image(file = "data/projectimage.RData")
现在,projectimage.RData文件包含了当前工作目录下所有的变量。
加载文件load()
加载.RData文件时,使用load()功能。比如,加载之前保存的study1.Rdata文件中的三个变量时(study.df,score.by.sex,study1.htest),可使用以下命令:
# Load objects in study1.RData into my workspace
load(file = "data/study1.RData")
加载当前工作目录下保存的projectimage.RData文件的所有变量时,可使用以下函数:
# Load objects in projectimage.RData into my workspace
load(file = "data/projectimage.RData")
删除文件rm()
使用rm()功能去除当前工作目录下的所有变量,统计分析时,可能会发现工作目录包含了太多并不需要的文件,可能会拖慢电脑运行速度并可能引起干扰。当移除特定变量时,可使用rm()函数,比如,为了移除huge.df的数据框,可使用以下函数:
# Remove huge.df from workspace
rm(huge.df)
如果想要移除当前工作目录下所有的文件,使用list = ls()
# Remove ALL objects from workspace
rm(list = ls())
重点是!!一旦你删除了一个变量,将无法恢复。慎用rm(list = ls())