一、决策树简介:
关于决策树,几乎是数据挖掘分类算法中最先介绍到的。
决策树,顾名思义就是用来做决定的树,一个分支就是一个决策过程。
每个决策过程中涉及一个数据的属性,而且只涉及一个。然后递归地,贪心地直到满足决策条件(即可以得到明确的决策结果)。
决策树的实现首先要有一些先验(已经知道结果的历史)数据做训练,通过分析训练数据得到每个属性对结果的影响的大小,这里我们通过一种叫做信息增益的理论去描述它,期间也涉及到熵的概念。也可参考文章信息增益与熵.
下面我们结合实例说一下决策树实现过程中的上述关键概念:
假设我们有如下数据:
age | job | house | credit | class |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 2 | 0 |
1 | 1 | 0 | 2 | 1 |
1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 2 | 0 |
2 | 1 | 1 | 2 | 1 |
2 | 0 | 1 | 3 | 1 |
2 | 0 | 1 | 3 | 1 |
3 | 0 | 1 | 3 | 1 |
3 | 0 | 1 | 2 | 1 |
3 | 1 | 0 | 2 | 1 |
3 | 1 | 0 | 3 | 1 |
3 | 0 | 0 | 1 | 0 |
(一)
我们首先要通过计算找到哪个属性的所有属性值能更好地表达class字段的不同。通过计算,我们发现house的属性值最能表现class字段的不同。这个衡量标准其实就是信息增益。计算方法是:首先计算全部数据的熵,然后除class之外的其他属性逐个遍历,找到熵最小的那个属性(house),然后将全部数据的熵减去按照house属性划分数据之后的数据的熵。
这个值如果满足条件假如(>0.1),我们认为数据应该按照这个节点进行分裂,也就是说这个属性(house)构成了我们的一次决策过程。
(二)
然后
在按照house分裂的每个数据集上,针对其他属性(house除外)进行与(一)相同的过程,直到信息增益不足以满足数据分裂的条件。
这样,我们就得到了一个关于属性数据划分的一棵树。可以作为class字段未知的数据的决策依据。
二、决策树代码实现:
具体计算代码如下:---假设上述数据我们保存为descision.dat文件,以及需要bash4.0及以上支持运行。
- #!/home/admin/bin/bash_bin/bash_4
- input=$1;
- if [ -z $input ]; then
- echo "please input the traning file";
- exit 1;
- fi
- ## pre calculate the log2 value for the later calculate operation
- declare -a log2;
- logi=0;
- records=$(cat $input | wc -l);
- for i in `awk -v n=$records 'BEGIN{for(i=1;i<n;i++) print log(i)/log(2);}'`
- do
- ((logi+=1));
- log2[$logi]=$i;
- done
- ## function for calculating the entropy for the given distribution of the class
- function getEntropy {
- local input=`echo $1`;
- if [[ $input == *" "* ]]; then
- local current_entropy=0;
- local sum=0;
- local i;
- for i in $input
- do
- ((sum+=$i));
- current_entropy=$(awk -v n=$i -v l=${log2[$i]} -v o=$current_entropy 'BEGIN{print n*l+o}');
- done
- current_entropy=$(awk -v n=$current_entropy -v b=$sum -v l=${log2[$sum]} 'BEGIN{print n/b*-1+l;}')
- eval $2=$current_entropy;
- else
- eval $2=0;
- fi
- }
- ### the header title of the input data
- declare -A header_info;
- header=$(head -1 $input);
- headers=(${header//,/ })
- length=${#headers[@]};
- for((i=0;i<length;i++))
- do
- attr=${headers[$i]};
- header_info[$attr]=$i;
- done
- ### the data content of the input data
- data=${input}_dat;
- sed -n '2,$p' $input > $data
- ## use an array to store the information of a descision tree
- ## the node structure is {child,slibling,parent,attr,attr_value,leaf,class}
- ## the root is a virtual node with none used attribute
- ## only the leaf node has class flag and the "leaf,class" is meaningfull
- ## the descision_tree
- declare -a descision_tree;
- ## the root node with no child\slibing and anythings else
- descision_tree[0]="0:0:0:N:N:0:0";
- ## use recursive algrithm to build the tree
- ## so we need a trace_stack to record the call level infomation
- declare -a trace_stack;
- ## push the root node into the stack
- trace_stack[0]=0;
- stack_deep=1;
- ## begin to build the tree until the trace_stack is empty
- while [ $stack_deep -ne 0 ]
- do
- ((stack_deep-=1));
- current_node_index=${trace_stack[$stack_deep]};
- current_node=${descision_tree[$current_node_index]};
- current_node_struct=(${current_node//:/ });
- ## select the current data set
- ## get used attr and their values
- attrs=${current_node_struct[3]};
- attrv=${current_node_struct[4]};
- declare -a grepstra=();
- if [ $attrs != "N" ];then
- attr=(${attrs//,/ });
- attrvs=(${attrv//,/ });
- attrc=${#attr[@]};
- for((i=0;i<attrc;i++))
- do
- a=${attr[$i]};
- index=${header_info[$a]};
- grepstra[$index]=${attrvs[$i]};
- done
- fi
- for((i=0;i<length;i++))
- do
- if [ -z ${grepstra[$i]} ]; then
- grepstra[$i]=".*";
- fi
- done
- grepstrt=${grepstra[*]};
- grepstr=${grepstrt// /,};
- grep $grepstr $data > current_node_data
- ## calculate the entropy before split the records
- entropy=0;
- input=`cat current_node_data | cut -d "," -f 5 | sort | uniq -c | sed 's/^ \+//g' | cut -d " " -f 1`
- getEntropy "$input" entropy;
- ## calculate the entropy for each of the rest attrs
- ## and select the min one
- min_attr_entropy=1;
- min_attr_name="";
- min_attr_index=0;
- for((i=0;i<length-1;i++))
- do
- ## just use the rest attrs
- if [[ "$attrs" != *"${headers[$i]}"* ]]; then
- ## calculate the entropy for the current attr
- ### get the different values for the headers[$i]
- j=$((i+1));
- cut -d "," -f $j,$length current_node_data > tmp_attr_ds
- dist_values=`cut -d , -f 1 tmp_attr_ds | sort | uniq -c | sed 's/^ \+//g' | sed 's/ /,/g'`;
- totle=0;
- totle_entropy_attr=0;
- for k in $dist_values
- do
- info=(${k//,/ });
- ((totle+=${info[0]}));
- cur_class_input=`grep "^${info[1]}," tmp_attr_ds | cut -d "," -f 2 | sort | uniq -c | sed 's/^ \+//g' | cut -d " " -f 1`
- cur_attr_value_entropy=0;
- getEntropy "$cur_class_input" cur_attr_value_entropy;
- totle_entropy_attr=$(awk -v c=${info[0]} -v e=$cur_attr_value_entropy -v o=$totle_entropy_attr 'BEGIN{print c*e+o;}');
- done
- attr_entropy=$(awk -v e=$totle_entropy_attr -v c=$totle 'BEGIN{print e/c;}');
- if [ $(echo "$attr_entropy < $min_attr_entropy" | bc) = 1 ]; then
- min_attr_entropy=$attr_entropy;
- min_attr_name="${headers[$i]}";
- min_attr_index=$j;
- fi
- fi
- done
- ## calculate the gain between the original entropy of the current node
- ## and the entropy after split by the attribute which has the min_entropy
- gain=$(awk -v b=$entropy -v a=$min_attr_entropy 'BEGIN{print b-a;}');
- ## when the gain is large than 0.1 and then put it as a branch
- ## and add the child nodes to the current node and push the index to the trace_stack
- ## otherwise make it as a leaf node and get the class flag
- ## and do not push trace_stack
- if [ $(echo "$gain > 0.1" | bc) = 1 ]; then
- ### get the attribute values
- attr_values_str=`cut -d , -f $min_attr_index current_node_data | sort | uniq`;
- attr_values=($attr_values_str);
- ### generate the node and add to the tree and add their index to the trace_stack
- tree_store_length=${#descision_tree[@]};
- current_node_struct[0]=$tree_store_length;
- parent_node_index=$current_node_index;
- attr_value_c=${#attr_values[@]};
- for((i=0;i<attr_value_c;i++))
- do
- tree_store_length=${#descision_tree[@]};
- slibling=0;
- if [ $i -lt $((attr_value_c-1)) ]; then
- slibling=$((tree_store_length+1));
- fi
- new_attr="";
- new_attrvalue="";
- if [ $attrs != "N" ]; then
- new_attr="$attrs,$min_attr_name";
- new_attrvalue="$attrv,${attr_values[$i]}";
- else
- new_attr="$min_attr_name";
- new_attrvalue="${attr_values[$i]}";
- fi
- new_node="0:$slibling:$parent_node_index:$new_attr:$new_attr_value:0:0";
- descision_tree[$tree_store_length]="$new_node";
- trace_stack[$stack_deep]=$tree_store_length;
- ((stack_deep+=1));
- done
- current_node_update=${current_node_struct[*]};
- descision_tree[$current_node_index]=${current_node_update// /:};
- else ## current node is a leaf node
- current_node_struct[5]=1;
- current_node_struct[6]=`cut -d , -f $length current_node_data | sort | uniq -c | sort -n -r | head -1 | sed 's/^ \+[^ ]* //g'`;
- current_node_update=${current_node_struct[*]};
- descision_tree[$current_node_index]=${current_node_update// /:};
- fi
- ## output the descision tree after every step for split or leaf node generater
- echo ${descision_tree[@]};
- done
执行代码:
- ./descision.sh descision.dat
执行结果为:
- 1:0:0:N:N:0:0 0:2:0:house:0:0:0 0:0:0:house:1:0:0
- 1:0:0:N:N:0:0 0:2:0:house:0:0:0 0:0:0:house:1:1:1
- 1:0:0:N:N:0:0 3:2:0:house:0:0:0 0:0:0:house:1:1:1 0:4:1:house,job:0,0:0:0 0:0:1:house,job:0,1:0:0
- 1:0:0:N:N:0:0 3:2:0:house:0:0:0 0:0:0:house:1:1:1 0:4:1:house,job:0,0:0:0 0:0:1:house,job:0,1:1:1
- 1:0:0:N:N:0:0 3:2:0:house:0:0:0 0:0:0:house:1:1:1 0:4:1:house,job:0,0:1:0 0:0:1:house,job:0,1:1:1
输出结果中展示了决策树结构生成过程的细节,以及生成过程中树的变化过程
本代码中使用了一维数组结构来存储整棵决策树,输出的先后顺序按照数组下标输出。
输出结果中最后一行表示最终的决策树。它表示的树形结构其实是:
这样看着是不是就爽多了。
说明:
关于上述决策树结果中其实有部分存在误导:
默认根节点是放在数组的第一个位置的,即索引值为0,而子节点中的child与sibling为0时并不表示指向跟节点,而是表示无意义,即没有子节点或兄弟节点。
该决策树所代表的分类规则:
根据该决策树输出,我们挖掘的规则是这样的:
首先根据house属性判断,当house属性为1时,走到索引为2的节点,此时该节点是叶子节点,预测值class为1.
当house属性为0时,接着按照job属性来判断,当job属性为0时走到索引为3的节点,预测值class为0。如果job属性为1时走到索引值为4的节点,此时预测值class为1.
转载自:http://liuzhiqiangruc.iteye.com/blog/1601922