duck_typing在数据分析中的一个实际应用

这里的重点其实是duck_typing的应用而非数据分析。
在搞一些基于DataFrame的研究的时候,经常会遇到想增加或者减少x factor的情况。以下这个类会是一个特别明显以及容易记忆的snippet。ML了解中的一些其他的知识点就这么被点亮啦啦啦:

from sklearn.base import BaseEstimator,TransformerMixin

rooms_ix,bedrooms_ix,population_ix,household_ix = 3,4,5,6

class CombinedAttributesAdder(BaseEstimator,TransformerMixin):#加入BaseEstimater就不用加其他参数了,它会自动去底下的函数里面捞;加入TransformerMixin就可以有def fix_transform这个函数了,至于transform和fit_transform的意义和用法以及差异,和本篇关系并不大,好奇的话,可以查看这个[回答](https://datascience.stackexchange.com/questions/12321/difference-between-fit-and-fit-transform-in-scikit-learn-models%20%E5%9B%9E%E7%AD%94)。
    def __init__(self,add_bedrooms_per_room = True):  #默认是true
        self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self,X,y=None):
        return self  
    def transform(self,X,y=None):
        rooms_per_household = X[:,rooms_ix] / X[:,household_ix]  #这个其实也该多看看,取了所有行的第rooms_ix和 household_ix列的数据来计算。
        population_per_household = X[:,population_ix] / X[:,household_ix]
        if self.add_bedrooms_per_room:
            bedrooms_per_room = X[:,bedrooms_ix] / X[:,rooms_ix]
            return np.c_[X,rooms_per_household,population_per_household,bedrooms_per_room]
        else:
            return np.c_[X,rooms_per_household,population_per_household]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取啥都被占用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值