ACM-DP-数位dp 2017浙江省赛E题Seven Segment Display

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011412840/article/details/80349724

题目链接
有两个版本:
一个是数位dp的板子应用
一个是找规律得到的模拟
数位dp

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
using namespace std;
const long long maxn=(long long)0xffffffff;
int num[16]={6,2,5,5,4,5,6,3,7,6,6,5,4,5,5,4};
int dig[20];
long long dp[20][205];
const int mod=16;
int t;
long long e,s;
long long dfs(int pos,long long sum,bool limit){
    if(pos==-1)return sum;
    if(!limit&&dp[pos][sum]!=-1)return dp[pos][sum];
    int up=limit?dig[pos]:mod-1;
    long long tmp=0;
    for(int i=0;i<=up;i++){
        tmp+=dfs(pos-1,sum+num[i],limit&&i==dig[pos]);
    }
    if(!limit)dp[pos][sum]=tmp;
    return tmp;
}
long long solve(long long x){
    for(int i=0;i<8;i++){
        dig[i]=x%mod;
        x/=mod;
    }
    return dfs(7,0,1);
}
int main(){
    scanf("%d",&t);
    memset(dp,-1,sizeof(dp));
    while(t--){
        scanf("%lld %llX",&e,&s);
        e--;
        e=e+s;
        if(e>maxn){//ffffffff
            e=e%(maxn+1);//fffffffff+1
            printf("%lld\n",solve(maxn)-solve(s-1)+solve(e));//ffffffff
        }
        else printf("%lld\n",solve(e)-solve(s-1));
    }
    return 0;
}

找规律模拟
思路:

1.计算每个八位数值n到00000000的前缀和
就是solve(n)=={
                for(00000000->*******n)ans+=(sumnum[1-8]);
            }
2.递归处理的思想
我的存储顺序是8 7 6 5 4 3 2 1    计算从8->1
比如样例第一个89ABCDEF的第八位:
分成两个部分:    
            80000000之前的前缀和(00000000,1(7*0),2(7*0)...)
            8*******循环向下重复当前相同的操作
             9000000之前的前缀和
             9******循环向下......
3.找规律
对于10000000,从09999999-00000000只有后七位在变化,(找规律)可以发现每个数字在每个位置上的总次数是一样的,即存在周期。
于是:总共有16^7个数值(高中的排列懂吗?就是乘法事件),共7位数位,总共7*16^7个数字出现,周期(16个)可以简化这个计算,(7*16^7)/16 * sum(T).
4.scanf真好用,差不多骚操作就这些了,祝AC快乐

代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<string.h>
using namespace std;
const long long maxn=(long long)0xffffffff;
int num[17]={6,2,5,5,4,5,6,3,7,6,6,5,4,5,5,4,78};
long long du[8];
int dig[10];
const int mod=16;
int t;
long long e,s;
long long solve(long long x){
    long long q=x,l=x;
    for(int i=0;i<8;i++){
        dig[i]=x%mod;
        x/=mod;
    }
    long long sum=0;
    for(int i=7;i>=0;i--){
        if(dig[i]){
            long long temp=0;
            //79999999-00000000
            for(int j=0;j<dig[i];j++){
                temp+=num[j]*du[i];
                temp+=num[16]*du[i-1]*i;//i位
            }
            q=0;
            for(int j=i-1;j>=0;j--)q+=dig[j]*du[j];
            //80000000-89ABCDEF里‘8’出现了9ABCDEF+1次
            temp+=(q+1)*num[dig[i]];//q这个数时(0-q)有q+1个
            sum+=temp;
        }
        else sum+=(q+1)*num[0];//q这个数时(0-q)有q+1个
    }
    //printf("l=%lld.sum=%lld\n",l,sum);
    return sum;
}
 int main(){
    scanf("%d",&t);
    du[0]=1;
    for(int i=1;i<8;i++)du[i]=du[i-1]*mod;
    while(t--){
        scanf("%lld %llX",&e,&s);
        e=e-1;
        e=e+s;
        if(e>maxn){
            e=e-(maxn+1);
            //printf("maxn=%lld     s-1=%lld      e=%lld\n",solve(maxn),solve(s-1),solve(e));
            printf("%lld\n",solve(e)-solve(s-1)+solve(maxn));
        }
        else {
            printf("%lld\n",solve(e)-solve(s-1));
        }
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页