蓝桥杯-数论基础-最大比例

题目

X星球的某个大奖赛设了M级奖励。每个级别的奖金是一个正整数。
并且,相邻的两个级别间的比例是个固定值。
也就是说:所有级别的奖金数构成了一个等比数列。比如:
16,24,36,54
其等比值为:3/2
现在,我们随机调查了一些获奖者的奖金数。
请你据此推算可能的最大的等比值。
输入格式:
第一行为数字N,表示接下的一行包含N个正整数
第二行N个正整数Xi(Xi<1 000 000 000 000),用空格分开。每个整数表示调查到的某人的奖金数额
要求输出:
一个形如A/B的分数,要求A、B互质。表示可能的最大比例系数
测试数据保证了输入格式正确,并且最大比例是存在的。
例如,输入:
3
1250 200 32
程序应该输出:
25/4
再例如,输入:
4
3125 32 32 200
程序应该输出:
5/2
再例如,输入:
3
549755813888 524288 2
程序应该输出:
4/1

题解

我第一眼看见这个,就想到gcd和质因子,于是非常顺理成章的
1.打质数表(1e6),枚举质因子,对所有数都分解当前的质因子
2.对质因子幂次的变化取gcd
3.gcd就是质因子最小变化,即比例(q)
4.注意分清是分子还是分母
PS:我不知道超不超时,没有测试数据,就是单纯想记录一下思路(勿喷)

代码

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
const double eps=3e-8;
const ll mod=1e9;
const ll maxn=1000005;
int n,m;
vector<ll>prim;
bool noprim[maxn];
void init(){
    mem(noprim,0);
    noprim[1]=1;
    for(ll i=2;i<maxn;i++){
        if(!noprim[i])prim.push_back(i);
        for(int j=0;j<prim.size()&&1LL*prim[j]*i<maxn;j++){
            ll temp=prim[j]*i;
            noprim[temp]=1;
            if(i%prim[j]==0)break;
        }
    }
}
set<ll>a;
int main(){
    init();//打表
    while(scanf("%d",&n)){
        ll p,q,cnt,cn;
        //输入并去重
        a.clear();
        while(n--){
            scanf("%lld",&p);
            a.insert(p);
        }
        //分解质因子
        ll fenzi=1,fenmu=1;
        for(int i=0;i<prim.size();i++){
            p=prim[i];
            ll gcc=0;
            bool jia=false;
            cn=0;
            int cm=0;
            for(auto it:a){
                q=it;
                cnt=0;
                while(q%p==0){
                    cnt++;
                    q/=p;
                }
                if(cm!=0){
                    if(cn<cnt){
                        jia=true;
                    }
                    gcc=__gcd(gcc,abs(cnt-cn));//取质因子幂的gcd
                }
                cn=cnt;
                cm++;
            }
            if(jia){
                //if(i<10)printf("%lld:%lld\n",p,gcc);
                while(gcc--)fenzi*=p;
            }
            else {
                //if(i<10)printf("%lld:%lld\n",p,gcc);
                while(gcc--)fenmu*=p;
            }
        }
        ll sum=fenzi+fenmu,ans=max(fenzi,fenmu);
        cout<<ans<<"/"<<sum-ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值