在训练神经网络的过程中需要用到很多工具,其中最重要的三部分是数据处理、可视化和GPU加速。本章主要介绍PyTorch在这几方面常用的工具,合理使用这些工具能极大地提高编程效率。
5.1 数据处理
在解决深度学习问题的过程中,往往需要花费大量的精力去处理数据,包括图像、文本、语音或其他二进制数据等。数据的处理对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练,也会提高模型效果。考虑到这一点,PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或者增强等操作,同时可通过并行化加速数据加载。
(1)数据加载
在PyTorch中,数据加载可通过自定义的数据集对象实现。数据集对象被抽象为Dataset,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法。
- getitem:返回一条数据或一个样本。obj[index]等价于obj.getitem(index)。
- len:返回样本的数量。len(obj)等价于obj.len()。
这里我们以Kaggle经典挑战赛“Dogs vs. Cats”的数据为例,详细讲解如何处理数据。“Dogs vs. Cats”是一个分类问题,判断一张图片是狗还是猫,其所有图片都存放在一个文件夹下,根据文件名的前缀判断是狗还是猫。
import torch as t
from torch.utils import data
import os
from PIL import Image
import numpy as np
class DogCat(data.Dataset):
def __init__(self, root):
imgs = os.listdir(root)
# 所有图片的绝对路径
# 这里不实际加载图片,只是指定路径,当调用__getitem__时才会真正读图片
self.imgs = [os.path.join(root, img) for img in imgs]
def __getitem__(self, index):
img_path = self.imgs[index]
# dog->1, cat->0
label = 1 if 'dog' in img_path.split('/')[-1] else 0
pil_img = Image.open(img_path)
array = np.asarray(pil_img)
data = t.from_numpy(array)
return data, label
def __len__(self):
return len(self.imgs)
dataset = DogCat('./data/dogcat/')
img, label = dataset[0] # 相当于调用dataset.__getitem__(0)
for img, label in dataset:
print(img.size(), img.float().mean(), label)
输出:
torch.Size([500, 497, 3]) tensor(106.4915) 0
torch.Size([499, 379, 3]) tensor(171.8085) 0
torch.Size([236, 289, 3]) tensor(130.3004) 0
torch.Size([374, 499, 3]) tensor(115.5177) 0
torch.Size([375, 499, 3]) tensor(116.8139) 1
torch.Size([375, 499, 3]) tensor(150.5080) 1
torch.Size([377, 499, 3]) tensor(151.7174) 1
torch.Size([400, 300, 3]) tensor(128.1550) 1
通过上面的代码,我们学习了如何自定义自己的数据集,并可以依次获取。但这里返回的数据不适合实际使用,因其具有如下两方面问题:
- 返回样本的形状不一,因每张图片的大小不一样,这对于需要取batch训练的神经网络来说很不友好。
- 返回样本的数值较大,未归一化至[-1, 1]。
针对上述问题,PyTorch提供了torchvision。它是一个视觉工具包,提供了很多视觉图像处理的工具,其中transforms模块提供了对PIL Image对象和Tensor对象的常用操作。
对PIL Image的操作包括:
- Scale:调整图片尺寸,长宽比保持不变
- CenterCrop、`RandomCrop、RandomResizedCrop: 裁剪图片
- Pad:填充
- ToTensor:将PIL Image对象转成Tensor,会自动将[0, 255]归一化至[0, 1]
对Tensor的操作包括:
- Normalize:标准化,即减均值,除以标准差
- ToPILImage:将Tensor转为PIL Image对象
如果要对图片进行多个操作,可通过Compose函数将这些操作拼接起来,类似于nn.Sequential。注意,这些操作定义后是以函数的形式存在,真正使用时需调用它的__call__方法,这点类似于nn.Module。例如要将图片调整为224×224,首先应构建这个操作trans = Resize((224, 224)),然后调用trans(img)。下面我们就用transforms的这些操作来优化上面实现的dataset。
import os
from PIL import Image
import numpy as np
from torchvision import transforms as T
transform = T.Compose([
T.Resize(224), # 缩放图片(Image),保持长宽比不变,最短边为224像素
T.CenterCrop(224), # 从图片中间切出224*224的图片
T.ToTensor(), # 将图片(Image)转成Tensor,归一化至[0, 1]
T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]) # 标准化至[-1, 1],规定均值和标准差
])
class DogCat(data.Dataset):
def __init__(self, root, transforms=None):
imgs = os.listdir(root)
self.imgs = [os.path.join(root, img) for img in imgs]
self.transforms=transforms
def __getitem__(self, index):
img_path = self.imgs[index]
label = 0 if 'dog' in img_path.split('/')[-1] else 1
data = Image.open(img_path)
if self.transforms:
data = self.transforms(data)
return data, label
def __len__(self):
return len(self.imgs)
dataset = DogCat('./data/dogcat/', transforms=transform)
img, label = dataset[0]
for img, label in dataset:
print(img.size(), label)
输出:
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 1
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
torch.Size([3, 224, 224]) 0
除了上述操作之外,transforms还可通过Lambda封装自定义的转换策略。例如想对PIL Image进行随机旋转,则可写成这样trans=T.Lambda(lambda img: img.rotate(random()*360))。
torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用,具体使用方法请参看官方文档。在这里介绍一个会经常使用到的Dataset——ImageFolder,它的实现和上述的DogCat很相似。ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:
ImageFolder(root, transform=None, target_transform=None, loader=default_loader)
它主要有四个参数:
- root:在root指定的路径下寻找图片。
- transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象。
- target_transform:对label的转换。
- loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象。
label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。
from torchvision.datasets import ImageFolder
dataset = ImageFolder('data/dogcat_2/')
# cat文件夹的图片对应label 0,dog对应1
dataset.class_to_idx
输出:
{'cat': 0, 'dog': 1}
# 所有图片的路径和对应的label
dataset.imgs
输出:
[('data/dogcat_2/cat\\cat.12484.jpg', 0),
('data/dogcat_2/cat\\cat.12485.jpg', 0),
('data/dogcat_2/cat\\cat.12486.jpg', 0),
('data/dogcat_2/cat\\cat.12487.jpg', 0),
('data/dogcat_2/dog\\dog.12496.jpg', 1),
('data/dogcat_2/dog\\dog.12497.jpg', 1),
('data/dogcat_2/dog\\dog.12498.jpg', 1),
('data/dogcat_2/dog\\dog.12499.jpg', 1)]
# 没有任何的transform,所以返回的还是PIL Image对象
dataset[0][1] # 第一维是第几张图,第二维为1返回label
dataset[0][0] # 第一维是第几张图,第二维为0返回图片数据
输出:
# 加上transform
normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
T.RandomResizedCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize,
])
dataset = ImageFolder('data/dogcat_2/', transform=transform)
# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
dataset[0][0].size()
输出:
torch.Size([3, 224, 224])
to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
to_img(dataset[0][0]*0.2+0.4)
输出:
Data