Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
Difficulty: Hard
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
if(newInterval == null)
return intervals;
List<Interval> res = new ArrayList<Interval>();
if(intervals.size() == 0){
res.add(newInterval);
return res;
}
int flag = 0;
for(int i = 0; i < intervals.size(); i++){
Interval temp = intervals.get(i);
if(flag == 0 && temp.end < newInterval.start){
res.add(temp);
}
else if(flag == 0 && temp.start > newInterval.end){
flag = 1;
res.add(newInterval);
res.add(temp);
}
else if(flag == 0){
flag = 1;
Interval newIn = new Interval(Math.min(temp.start, newInterval.start), Math.max(temp.end, newInterval.end));
res.add(newIn);
}
else if(flag == 1 && res.get(res.size() - 1).end >= temp.start){
res.get(res.size() - 1).end = Math.max(res.get(res.size() - 1).end, temp.end);
}
else{
res.add(temp);
}
}
if(flag == 0)
res.add(newInterval);
return res;
}
}