A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Difficulty: Medium
Solution: DP
public class Solution {
public int uniquePaths(int m, int n) {
if(m < 1 || n < 1) return 0;
if(m == 1 || n == 1) return 1;
int[][] grid = new int[m][n];
grid[0][0] = 1;
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(i > 0){
grid[i][j] += grid[i - 1][j];
}
if(j > 0){
grid[i][j] += grid[i][j - 1];
}
}
}
return grid[m - 1][n - 1];
}
}