Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Difficulty: Medium
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
if(m == 0) return 0;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = 1;
if(obstacleGrid[0][0] == 1) return 0;
for(int i = 0; i < obstacleGrid.length; i++){
for(int j = 0; j < obstacleGrid[0].length; j++){
if(obstacleGrid[i][j] == 1) continue;
if(i > 0){
dp[i][j] += dp[i - 1][j];
}
if(j > 0){
dp[i][j] += dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}