基于灰狼算法的二维路径规划算法设计与仿真

目录

1 灰狼算法

2 二维环境建模

 3 路径规划

3.1 初始化

3.2 适应度函数

3.3 仿真结果


1 灰狼算法

灰狼算法(Grey Wolf Optimizer, GWO)是2014年由Seyedali Mirjalili等人提出的一种新型群智能优化算法,Seyedali Mirjalili教授近几年提出了几个新型智能算法,并将其应用于无人机路径规划中,这里po一下这位教授的个人网站:Seyedali Mirjalili,里面主要有灰狼算法,鲸鱼优化算法,狮蚁算法等多个智能算法的matlab脚本文件和toolbox,(其他语言的算法代码在网站里也有,python,java,C++等)。以灰狼算法为例,这位教授个人网站上提供了灰狼算法对单目标、多目标优化的m文件以及matlab toolbox,教授也将别人的改进算法代码放在了官网上。如下图:

在此不对灰狼算法原理公式进行介绍说明。直接上代码:

% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim)

% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop
while l<Max_iter
    for i=1:size(Positions,1)  
        
       % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update Alpha, Beta, and Delta
        if fitness<Alpha_score 
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end
    
    
    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
    
    % Update the Position of search agents including omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
                       
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            
            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)
            
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
                       
            r1=rand();
            r2=rand();
            
            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)
            
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            
            r1=rand();
            r2=rand(); 
            
            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)
            
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
            
            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
            
        end
    end
    l=l+1;    
    Convergence_curve(l)=Alpha_score;
end

2 二维环境建模

二维环境建模可以看作是对现实三维环境的投影和简化,假设我们的运动物工作在相对水平的环境,且匀速运动。建模示意图如下:

上图中,S,T分别是起点和终点,圆圈区域是我们路径规划需要尽量避开的区域(亦称为威胁),其主要参数为威胁中心,威胁半径和威胁等级(威胁等级并没有在示意图显示),以黄色节点为waypoint的线条是可行的一条规划路径。

通过设计复杂程度不一样的二维环境,来测试算法在不同苛刻程度下的环境的效果。在此用了三个二维环境来进行实验:

%% case 1
radius = [10 10 8 12 9];
threat_lv = [2 10 1 2 3];
threat_center = [45,52;12,40;32,68;36,26;55,80];

%% case 2
radius = [10 10 8 12 9 10 10];
threat_lv = [2 10 1 2 5 2 4];
threat_center = [52,52;32,40;12,48;36,26;63,56;50,42;30,70];

%% case 3
radius = [10 18 10 12 10 11];
threat_lv = [5 5 5 5 5 5];
threat_center = [30,20;50,15;65,55;50,80;75,90;50,36];

 3 路径规划

 由于起点S和终点T的连线并不与X轴平行,为了方便计算我们先将坐标轴旋转,将线段ST所在的直线作为新的X轴,S作为新坐标系的原点。

旋转矩阵:R=\begin{bmatrix} cos\Theta &sin\Theta \\-sin\Theta & cos\Theta \end{bmatrix}

路径规划算法设计:我们将新的X轴ST等分为D+1份,意味着路径包含D个黄色节点,D个黄色节点在新坐标系下的X坐标是已知的,而Y坐标是需要通过灰狼算法求解的。因此灰狼算法中的每个可行解都是D维的(即包含D个黄色节点的Y坐标)。

3.1 初始化

灰狼算法需要设置几个初始参数,如种群数量N(随机生成多少个可行解) 、迭代次数、解的维数D,以及上下界。

种群数量N可根据实际问题复杂程度或搜索空间大小来设置,显然N越大不一定越好,因为会增加算法时间复杂度。

最大迭代次数不宜过小,可通过多次实验整定。

上下界(lb,ub)限定了算法在整个过程中生成的解的范围,如果我们不设定上下界,那么最后生成的路径可能非常的离谱,虽然它没有经过威胁区域,但覆盖的范围可能会非常大,不满足实际要求,加上下界可以限定路径的大概区域。

3.2 适应度函数

 适应度函数是用来评价灰狼算法解的一种函数,适应度最好的灰狼(可行解)将成为新的头狼。这里我们将路径成本定义为威胁代价的累加,只有当路径经过了威胁区域时,我们才计算该段掉在威胁区域的路径代价:

 

​​​​​​​ 如上图所示,威胁代价最终变成五个采样点的威胁代价的加权和。

3.3 仿真结果

case1

case2

 

case3

 

上图中生成的三条路径要求也是不能有冲突,路径除了起点和终点之外不能有交集。我的解决方案是为三条路径分配不同上下界,保证区域不会重合,从根本上保证三条路径不会有交集。

可以看到仿真图里有些路径经过了威胁区域,这是由灰狼算法的随机性和上下界造成的。由于种群初始化是随机生成的,而初始化种群是会影响最终的算法结果的,这种随机性有可能让算法陷入局部最优,而算法的勘探机制越好,跳出局部最优的能力也会越强,但不可避免,这也是目前群智能算法的主要弊端,但是全局搜索又是不现实的,搜索整个解空间很浪费时间。

 参考文献:

  1. Sen Zhang,Yongquan Zhou,Zhiming Li,Wei Pan. Grey wolf optimizer for unmanned combat aerial vehicle path planning[J]. Advances in Engineering Software,2016,99.
  2. Seyedali Mirjalili,Seyed Mohammad Mirjalili,Andrew Lewis. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69.


  • 4
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
以下是基于灰狼优化算法的2维路径规划代码,其中使用了matplotlib库绘制路径: ```python import numpy as np import matplotlib.pyplot as plt # 灰狼优化算法 class GWO: def __init__(self, search_func, dim, search_range, n_individuals=10, max_iter=100): self.search_func = search_func self.dim = dim self.search_range = search_range self.n_individuals = n_individuals self.max_iter = max_iter def optimize(self): alpha_pos, beta_pos, delta_pos = self.init_individuals() for t in range(self.max_iter): a = 2 - 2 * t / self.max_iter # 控制参数a for i in range(self.n_individuals): # 灰狼位置更新 x = np.clip(alpha_pos + a * (beta_pos - delta_pos), self.search_range[0], self.search_range[1]) y = self.search_func(x) fitness = self.fitness_func(y) # 更新alpha, beta, delta if fitness[i] < fitness[0]: delta_pos[i] = beta_pos[i] beta_pos[i] = alpha_pos[i] alpha_pos[i] = x[i] elif fitness[i] < fitness[1]: delta_pos[i] = beta_pos[i] beta_pos[i] = x[i] elif fitness[i] < fitness[2]: delta_pos[i] = x[i] return alpha_pos # 初始化灰狼群体 def init_individuals(self): alpha_pos = np.zeros(self.dim) beta_pos = np.zeros(self.dim) delta_pos = np.zeros(self.dim) fitness = np.zeros(self.n_individuals) for i in range(self.dim): alpha_pos[i] = np.random.uniform(self.search_range[0], self.search_range[1]) beta_pos[i] = np.random.uniform(self.search_range[0], self.search_range[1]) delta_pos[i] = np.random.uniform(self.search_range[0], self.search_range[1]) y_alpha = self.search_func(alpha_pos) y_beta = self.search_func(beta_pos) y_delta = self.search_func(delta_pos) fitness[0] = self.fitness_func(y_alpha) fitness[1] = self.fitness_func(y_beta) fitness[2] = self.fitness_func(y_delta) return alpha_pos, beta_pos, delta_pos # 适应度函数 def fitness_func(self, y): return 1 / (1 + y) # 二维路径规划问题,目标函数为路径长度 def path_length(individual): n = len(individual) length = 0 for i in range(n-1): length += np.sqrt((individual[i][0] - individual[i+1][0])**2 + (individual[i][1] - individual[i+1][1])**2) return length # 绘制路径 def plot_path(individual): x = [point[0] for point in individual] y = [point[1] for point in individual] plt.plot(x, y, marker='o') plt.show() if __name__ == '__main__': # 二维坐标范围 search_range = [-10, 10] # 初始化路径 individual = np.array([[0, 0], [1, 2], [3, 1], [5, 4], [7, 5], [9, 3], [10, 10]]) # 初始化灰狼优化算法 gwo = GWO(path_length, len(individual), search_range, n_individuals=20, max_iter=100) # 优化路径 optimized_path = gwo.optimize() # 打印优化后的路径长度 print("优化后的路径长度为:", path_length(optimized_path)) # 绘制优化后的路径 plot_path(optimized_path) ``` 注意:这里的二维路径规划问题是一个简单的示例,实际应用中可能需要根据具体情况进行修改。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值