畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 20817 Accepted Submission(s): 7228
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1floyd算法实现如下:(注意此算法可实现任意两个点间的最短路径,也可处理负权边的问题,但执行效率没有迪杰斯特拉算法高)另外注意一点,再用邻接矩阵存图表时每次要比较一下当前坐标上对应的路径长度是否比最大值小,如果比最大值小则更新#include<stdio.h> #define INT 9999999 int a[210][210]; int main() { int n,m,i,j,ta,tb,tc,k,t,S,T; while(scanf("%d %d",&n,&m)!=EOF) { for(i=0;i<n;i++) for(j=0;j<n;j++) if(i!=j)a[i][j]=INT; else a[i][j]=0; for(t=0;t<m;t++) { scanf("%d %d %d",&ta,&tb,&tc); if(tc<a[ta][tb]||tc<a[tb][ta])//易错点!!!!!!!!!!! a[ta][tb]=a[tb][ta]=tc; } for(i=0;i<n;i++) for(j=0;j<n;j++) for(k=0;k<n;k++) if(a[k][i]+a[i][j]<a[k][j]) a[k][j]=a[k][i]+a[i][j]; scanf("%d %d",&S,&T); if(a[S][T]>=INT)printf("-1\n"); else printf("%d\n",a[S][T]); }//while //system("pause"); return 0; }
一下是迪杰斯特拉算法的实现(只能处理单源最短路径)#include<stdio.h> #include<string.h> #define INT 9999999 int map[210][210];//邻接矩阵存储图 int D[210];//存储源点到当前位点的路径长度 int final[210];//每确定一个最短路径上的点即放进来并标记为1,表示已访问过 int N,M,A,B,X,S,T; void dijkstra() {//执行Dijkstra算法 int i,j,min,pos; memset(final,0,sizeof(final));//初始状态下集合 final 为空, for(i=0;i<N;i++) D[i]=map[S][i];//D[i] 记录从源点 S 到达节点 i 的距离 final[S]=1;//将源点 S 加入集合 final 中 for(i=0;i<N;i++) { min=INT; for(j=0;j<N;j++) {//到下一个节点的位置 if(!final[j] && D[j]<min) { min=D[j]; pos=j; } } final[pos]=1;//并将其加入最短路径上的节点的集合 final中 for(j=0;j<N;j++) {//查找比较并更新 if(!final[j] && map[pos][j]<INT) {//直接与 pos 位置相邻的未被访问的节点 if(D[j]>map[pos][j]+D[pos]) {//如果存在比直接到达还要近的路,则更新 D[j]=map[pos][j]+D[pos]; } } } } if(D[T]<INT) printf("%d\n",D[T]); else printf("-1\n"); } int main() { int i,j; while(~scanf("%d",&N)) { scanf("%d",&M); // memset(map,-INT,sizeof(map));//错误的初始化方式,memset只能初始化为0,和-1; for(i=0;i<N;i++) {//初始化矩阵; for(j=0;j<N;j++) { if(i==j) map[i][j]=0; else map[i][j]=INT; } } // final[210]=false; for(i=0;i<M;i++) {//输入边; scanf("%d %d %d",&A,&B,&X); if(X<map[A][B] || X<map[B][A]) { map[A][B]=X; map[B][A]=X; } } scanf("%d %d",&S,&T); dijkstra(); } return 0; }