ChatGPT发展史

本文概述了OpenAIGPT系列模型的发展历程,包括GPT、GPT-2、GPT-3及其后续版本如GPT-3.5和GPT-4。重点介绍了每个版本的参数增长、预训练数据、学习能力以及在零样本和小样本学习上的进步。GPT-4在多语言和理解图像方面取得了显著突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chatbot和自然语言处理(NLP)领域中的一个重要里程碑是OpenAI的GPT(Generative Pre-trained Transformer)系列模型。以下是GPT系列自首个版本以来的发展历史以及每个版本的主要特点:

  1. GPT (Generative Pre-trained Transformer)
    • 发布年份:2018年。
    • 特点:第一代GPT模型采用了Transformer架构的decoder部分,并通过无监督学习预训练了语言模型。它使用了40GB的Internet文本数据进行预训练,并结合了有监督的fine-tuning来适应特定的下游任务。GPT在作者事先确定的下游任务中表现优秀,得益于其预训练策略和多任务fine-tuning能力。
  1. GPT-2
    • 发布年份:2019年。
    • 特点:GPT-2是GPT的增强版,模型参数增至15亿个。其使用了一个更大的数据集进行了预训练,可以生成更连贯和逼真的文本。OpenAI最初由于担心其潜在的滥用风险,延迟了GPT-2最大模型的发布。GPT-2没有针对特定任务进行fine-tuning,但它在多个任务上表现出了强大的零样本学习能力(zero-shot learning),即在没有任何有关特定任务指导的情况下直接使用预训练模型。
  1. GPT-3
    • 发布年份:2020年。
    • 特点:GPT-3有1750亿个参数。它在更广泛和更复杂的数据集上进行了训练,展现出了惊人的语言生成和理解能力。除了零样本学习,GPT-3在小样本(few-shot)学习上也表现出色,能够在给定几个示例后更好地适应特定任务。并且由于其大小和生成能力,不再需要fine-tuning,而是通过特定的提示(prompt)来完成特定任务。
  • GPT-3.5
    • 发布年份: 2021年
    • Turbo模型可以理解和生成自然语言或代码,并且已经针对使用Chat Completions API进行聊天进行了优化,但也适用于非聊天任务。
  • GPT-4
    • 发布年份: 2023年
    • 在性能上超过了以前的大型语言模型,截至2023年,它超过了大多数最先进的系统(这些系统通常具有特定基准训练或手工工程)。在MMLU基准测试中,这是一个涵盖57个主题的英语多选题套件,GPT-4不仅在英语中远远超过现有模型,而且在其他语言中也表现出色。GPT-4 模型还具有理解图像的能力
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值