在人工智能的世界中,我们经常遇到各种模型来解决不同类型的问题。最近,特别引人注意的是多模态模型和大型语言模型(LLM)。尽管这两种模型都是AI技术的当前前沿,但它们在功能和设计上有显著差异。本文旨在阐释这两种模型的概念、它们的不同之处,并通过一些常见的例子展示它们的应用。
多模态模型简介
多模态模型是指那些能够处理并融合来自于不同数据源(或称“模态”)的信息的模型。这些模态可能是图像、文本、音频、视频等。这类模型背后的关键理念是人类的感知系统本质上是多模态的,我们往往依赖于视觉和听觉的结合来理解世界。在模拟这种感知过程的时候,多模态模型努力通过整合来自不同感官的数据,从而实现更加丰富和深入的数据理解。
应用领域
- 视觉问答系统
- 机器人感知
- 社交媒体分析
- 情感分析
常见多模态模型举例
- CLIP(OpenAI):结合图像与文本,学习通用的视觉概念。
- ViLBERT(Facebook AI):为视觉内容和语言内容设计的双流架构。
- MMBT(Multimodal Bitransformers):结合Transformer和图像模型来处理图像和文本信息。
大型语言模型(LLM)简介
LLM,是那些专门为处理语言任务而设计的大型神经网络模型。这些模型通过在海量的文本数据上进行预训练,学习天然语言的结构、用法和语义,从而能够执行包括文本生成、翻译、摘要和问答等任务。LLM的关键特点是其庞大的大小,常见的模型常包含数十亿甚至数千亿的参数。<