常见的业务场景
场景1:数据涨跌异常如何处理?
场景2:如何评估渠道质量,确定投放优先级?
场景3:一个功能/内容上线后,如何评估其价值?
场景4:如何了解数字背后的用户?
场景5:对于羊毛党,如何查出谁在薅?
场景1:solution
对比分析,多维度拆解
常见假设:
活动影响:查对应活动页面对应动作的数据波动,关注活动是否有地域属性
版本发布:将版本号作为维度,区分查看
渠道投放:查看渠道来源变化
策略调整:策略上线时间节点,区分前后关键指标波动
服务故障:明确故障时间,按时间维度进行小时/分钟级别拆解
另外维度拆解可以叠加
场景2:solution
常见的渠道划分方式:
渠道质量跟踪:
①选择关键事件
选择反映产品目标人群会做的行为的数据
例如:
√ (电商)购买,(社区)发帖(可衡量各渠道的用户是否为目标用户)
Χ 完成为期3个月的课程(门槛太高/流程太深,转化率极低,无区分度)
Χ 打开APP,访问首页(门槛太低,同样缺乏区分度)
②查看产生关键事件的用户来源是哪
场景3:solution
上线后的目标与价值清晰明确
借助漏斗分析对比(转化关系明确时)
借助用户分群对比(转化关系较复杂时)
上线后关注其对产品价值的提升
借助精准留存对比
上线后探索更长期的产品潜力
借助分布情况分析,对比其是否优化了使用频次/场景的分布
①产品核心功能使用频次的分布
②使用场景(如时间段)的使用
场景4:solution
高质量拉新:
①“真正的用户”: 高留存,核心行为频次、完成率高
②“真正的用户”的特征:
是谁(如图书网站,通过用户买卖的书籍推断用户的年龄、受教育程度、地域、消费能力)
从哪儿来(通过电话访谈等方式,发现很多来自朋友推荐的用户)
③按此特征,找到类似的用户:
用户画像(倾向社科类书籍;高校,科研所,知识密集型区域)
渠道来源(用人拉人而非广撒网地投放)
精准运营推送:
①运营资源盘活
[千人一面]整个公司的内部营销资源存在上限
[千人十面]往往就能解决80%的问题,对应7~8个标签足矣
[千人千面]人力运营往往难以企及,自动化后或许可以
②推送内容与用户有关
向我说话 x 由我触发 x 和我有关
辅助产品设计:
谁:用户画像
在什么情况下:行为序列的属性
干什么&遇到什么问题:行为序列or屏幕录像