sigmoid与条件概率的关系及推导过程
sigmoid是机器学习中常用的激活函数,其优势作者这里不一一赘述,本文主要从另一个角度,判别模型(discriminative model)条件概率的角度对sigmoid函数进行推导。
机器学习判别模型主要想通过神经网络对 P(Y|X) 进行建模。
假设 xϵRn 且 yϵy1,y2 且 P(x|y1)∼N(μ1,∑) 且 P(x|y1)∼N(μ1,∑)
根据上述假设可得:
P(x|y1)=1(2π)n/2∑1/2e−(x−μ1)T∑−1(x−μ1)
P(x|y2)=1(2π)n/2∑1/2e−(x−μ2)T∑−1(x−μ1)
根据贝叶斯公式:
P(y1|x)=P(y1,x)p(