sigmoid与条件概率的关系及推导过程

本文探讨了sigmoid函数在机器学习判别模型中的作用,从条件概率P(Y|X)的角度出发,详细推导了sigmoid如何从概率密度函数的比较中得出。通过对高斯分布的假设和贝叶斯公式的应用,最终展示sigmoid如何表示为条件概率的形式,即P(y1|x) = 1 / (1 + e^(-xTw - b))。
摘要由CSDN通过智能技术生成

sigmoid与条件概率的关系及推导过程

sigmoid是机器学习中常用的激活函数,其优势作者这里不一一赘述,本文主要从另一个角度,判别模型(discriminative model)条件概率的角度对sigmoid函数进行推导。

机器学习判别模型主要想通过神经网络对 P(Y|X) 进行建模。

假设 xϵRn yϵy1,y2 P(x|y1)N(μ1,) P(x|y1)N(μ1,)
根据上述假设可得:
P(x|y1)1(2π)n/21/2e(xμ1)T1(xμ1)
P(x|y2)1(2π)n/21/2e(xμ2)T1(xμ1)

根据贝叶斯公式:
P(y1|x)=P(y1,x)p(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值