恶性肿瘤其实就是癌症的一种,它是由一些不正常的细胞组成的,这些细胞会不停地生长和繁殖,而且它们还会侵犯周围的正常组织,甚至通过血液和淋巴系统跑到身体其他部位去。
恶性肿瘤有以下几个特点:
1、无限制生长:它们会不停地分裂,变得越来越大。
2、侵袭性:它们会侵入周围的正常组织。
3、转移性:它们能通过血液和淋巴系统跑到身体其他部位,形成新的肿瘤。
4、异质性:肿瘤里面的细胞可能在基因和表现上各不相同。
5、血管生成:恶性肿瘤能刺激新血管的生长,来支持自己的生长。
6、免疫逃逸:它们能躲避免疫系统的监视和攻击。
恶性肿瘤根据它们起源的细胞类型,可以分为两大类:
1、上皮细胞肿瘤:这类肿瘤起源于覆盖身体表面和内部器官的上皮细胞。它们通常被称为“癌”,比如肺癌、乳腺癌、结肠癌、肝癌和胃癌等。
2、非上皮细胞肿瘤:这类肿瘤起源于不是上皮细胞的细胞,比如肌肉细胞、神经细胞或者血液细胞。这些肿瘤包括肉瘤(肌肉或结缔组织)、淋巴瘤(淋巴系统)、白血病(血液系统)和胶质瘤(脑组织)。
根据最新的数据和统计,以下是六种主要的恶性肿瘤:
1、肺癌:在全球范围内,肺癌是发病率和死亡率最高的恶性肿瘤。它不仅在男性中占据恶性肿瘤发病和死亡的首位,而且在女性中也位居前列。
2、乳腺癌:乳腺癌是女性中最常见的恶性肿瘤,在全球女性恶性肿瘤发病和死亡中占据重要位置。
3、结直肠癌(包括结肠癌和直肠癌):结直肠癌在全球范围内的发病率和死亡率都很高,是男性和女性中常见的恶性肿瘤之一。
4、前列腺癌:前列腺癌是男性中常见的恶性肿瘤之一,尤其在发达地区,其发病率较高。
5、胃癌:胃癌在全球范围内也是常见的恶性肿瘤之一,其发病率和死亡率在全球范围内都相当高。
6、肝癌:肝癌在全球范围内的发病率和死亡率都很高,尤其在亚洲一些地区,由于乙型肝炎病毒的高流行率,肝癌的发病率尤其高。
这些恶性肿瘤的发病和死亡情况在全球范围内有所不同,但它们都是导致全球癌症负担的主要因素。早期发现和治疗对于提高生存率至关重要。
肺癌数据集列表如下:
2025-03-25 更新
数据集:PCLT20K|医学图像分割数据集|肺癌肿瘤分割数据集
- 创建时间:2025-03-22
- 链接地址:PCLT20K|医学图像分割数据集|肺癌肿瘤分割数据集
- 数据集介绍:PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。
数据集:Duke Lung Cancer Screening Dataset 2024 |肺癌筛查|风险分类
- 创建时间:2024-09-28
- 链接地址:Duke Lung Cancer Screening Dataset 2024 (DLCS 2024)|肺癌筛查数据集|风险分类数据集
- 数据集介绍:Duke Lung Cancer Screening Dataset 2024 (DLCS 2024) 是一个用于肺癌风险分类研究的数据集,随着低剂量胸部CT筛查项目的普及,该数据集变得越来越重要。
数据集:肺癌数据分析|肺癌研究数据集|基因组学数据集
-
创建时间:2024-07-24
-
提供机构:上海芯超数据科技有限公司
-
数据集介绍:肺癌是一种起源于肺部支气管黏膜或腺体的恶性肿瘤,是全球范围内最常见的癌症之一,也是癌症死亡的主要原因。本产品提供DNA、RNA的分析流程以及单细胞的分析流程。其中DNA包含点突变、结构变异、融合分析、CNV变异分析。RNAseq除了基因表达差异外,还包括新转录本发现、等位基因特异性表达、转录本和非编码RNA的相互作用。单细胞分析包括细胞类别鉴定、细胞间通讯、单细胞轨迹分析、转录因子的分析。
数据集:dorsar/lung-cancer|肺癌检测数据集|医学影像分析数据集
-
更新时间:2024-06-30
-
数据集介绍:该数据集包含用于肺癌检测和分类的CT扫描图像,分为四个类别:腺癌、大细胞癌、鳞状细胞癌和正常(非癌性)肺组织。数据集共有315张图像,分为4个类别,具体分布为:腺癌120张,大细胞癌51张,正常54张,鳞状细胞癌90张。该数据集适用于训练和评估用于肺癌检测和分类的机器学习模型,可用于二元分类(癌性与非癌性)和多类别分类(特定癌症类型)。
数据集:Kabil007/LungCancer4Types|医学影像数据集|肺癌研究数据集
-
更新时间:2024-03-10
-
数据集介绍:肺癌图像数据集:综合收藏。探索我们精心策划的数据集,该数据集由高分辨率CT扫描图像组成,旨在帮助研究人员、临床医生和机器学习/深度学习爱好者研究肺癌的多样表现形式。关键特点包括:CT扫描图像,提供对肺癌形态学的详细见解;训练集(613张图像)、测试集(315张图像)和验证集(72张图像),每部分图像均被细致地标记为四个不同类别,包括腺癌、大细胞癌、正常和鳞状细胞癌。
数据集:TCGA-LUAD 肺癌CT影像数据集|医学影像数据集|肺癌诊断数据集
-
更新时间:2024-03-04
-
数据集介绍:本数据集是一个癌症CT图像数据,包括69位不同的患者的475个病例的中等规模的CT影像和患者年龄。该数据是 TCGA-LUAD 肺癌CT影像数据库的一部分。
数据集:LIDC-IDRI 肺部图像数据集|医学图像处理数据集|肺癌诊断数据集
-
创建时间:2023-08-09
-
数据集介绍:LIDC – IDRI 是肺部图像数据库联盟经过图像采集形成的数据集,其包括诊断和用于肺癌筛查的胸部 CT 扫描与病变注释。这是一个自由访问的国际资源,主要用于肺癌检测和诊断的计算机辅助诊断系统开发、训练和评估。
数据集:RIDER Lung CT 肺癌 CT 影像数据集|医学影像数据集|肺癌检测数据集
-
创建时间:2023-05-18
-
数据集介绍:RIDER Lung CT Dataset 是用于评估非小细胞肺癌患者 CT 扫描图像的肿瘤变异性数据集,其包含 15419 张图片。该数据集包含 32 名非小细胞肺癌患者的信息,每位患者均在 15 分钟内通过相同方案进行两次胸部 CT 扫描,放射科医生则在图像中独立测量每个肿瘤的最大直径,并且计算机软件会被用于协助测量,并使用一致性相关系数和 Bland-Altman 图协助评估。
数据集:QIN LUNG CT 肺癌 CT 影像数据集|医学影像数据集|肺癌检测数据集
-
创建时间:2023-05-09
-
数据集介绍:TCIA-QIN-LUNG Dataset 是肺癌 CT 影像数据集,其包含 47 个病人的 3954 张图像,分为 47 个系列共计 47 项研究。
数据集:NLST(National Lung Screening Trial)|肺癌筛查数据集|医疗影像数据集
-
创建时间:2022-10-17
-
链接地址:NLST|肺癌筛查数据集
-
数据集介绍:国家肺筛查试验 (NLST) 比较了两种检测肺癌的方法: 低剂量螺旋计算机断层扫描 (CT) (通常称为螺旋ct) 和标准胸部x线检查。螺旋ct使用x射线获得整个胸部的多图像扫描,而标准的胸部x射线产生整个胸部的单个图像,其中解剖结构相互覆盖。 研究结果表明,接受低剂量螺旋ct扫描的参与者死于肺癌的风险比接受标准胸部x光检查的参与者低15至20%。这相当于在大约7年的观察期内,与胸部x射线组相比,CT组筛查的每1,000人的死亡人数减少了约3人 (分别为17.6/1,000和20.7/1,000)。 在三轮筛查检查中,平均24.2% 的低剂量螺旋ct筛查为阳性,6.9% 的胸部x线检查为阳性。在试验的两个方面,大多数阳性筛查导致了额外的测试。
数据集:肺癌T细胞研究|单细胞技术数据集|肺癌研究数据集
-
创建时间:2021-12-10
-
数据集介绍:本研究对来自14个药物治疗前非小细胞肺癌患者的外周血、癌旁组织和癌组织的12,346个T细胞进行了单细胞转录组测序,全面描绘和解析了肺癌T细胞群体的组成、谱系以及功能状态图谱。基于T细胞的转录组数据及TCR序列,通过生物信息学手段分析细胞的亚群分类、组织分布特征、肿瘤内群体异质性及药物靶基因表达情况,该研究鉴定了跨组织分布的T细胞类群、肿瘤浸润T细胞的组成及亚群间潜在的状态转换关系,提出了新的肺腺癌临床标志物,也为免疫治疗特异性地靶向T细胞亚群提供了新的思路。