Frequency Estimation

前言

大数据统计中的频率估计问题,即求一个元素出现的次数。和Cardinality Estimation场景相似,面临着内存开销大的问题,不适合直接存储原始数据。本篇文章介绍解决这个问题的一个算法,Count-Min Sketch

算法

Count-Min Sketch 算法是在论文An Improved Data Stream Summary:
The Count-Min Sketch and its Applications
中阐述的,下面介绍的算法流程精度均参考自该论文,相关证明请参考原文。

流程

在这里插入图片描述
算法流程:

  1. 创建二维数组,count[d, w],每一位初始化为0。
  2. d个hash函数, h 1 h_1 h1 . . . h d h_d hd : {1 . . . n} → {1 . . . w}。
  3. 输入元素( i t i_t it, c t c_t ct),更新二维数组:count[ j j j, h j h_j h
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值