DL
Lonwayne
I am a college student in HIT.
展开
-
CNN网络演变
LeNet/AlexNet/VGGNet/Inception/ResNetLeNet:简单完整基本CNN模型的开端AlexNet:(1)网络扩大(5Conv+3FC+1softmax);(2)加入Relu;(3)解决过拟合;(4)多GPU计算VGGNet:网络扩大到十几层Inception:GooleNet,原来的结点也是网络,网络进一步扩大,性能提升2-3倍ResNet:(1原创 2018-01-22 10:50:14 · 336 阅读 · 0 评论 -
CNN可视化总结
《Visualizing and Understanding Convolutional Networks》反卷积可视化反卷积由unpool层+relu层+filter卷积的转置构成。越高层提取的特征需要训练的时间越长。卷积网络对左右平移和翻转具有不变性,但旋转不具有。可以使用随意遮盖统计最可能的特征关注点。高层卷积一般有更具区分性的特征,说明综合的卷积层次不能太少,没有卷积只...原创 2019-05-22 15:16:27 · 195 阅读 · 0 评论 -
数据增强总结
数据增强方式:(1)传统数据增强,包括crop,translate,zoom,hue等(2)GAN(CycleGAN)。生成的图片和真实图片差距较大,损失函数定义为分类偏差。(3)插值式,SMOTE,MIXUP等算法生成新图片(4)迁移学习(5)特征融合,特征手动提取论文总结:《The Effectiveness of Data Augmentation in I...原创 2019-06-05 11:13:10 · 3384 阅读 · 1 评论 -
卷积、池化、反卷积、反池化、上采样的知识点记录
卷积:SAME:输入大小不够时会在右边加padding补足。output_shape = ceil(input_shape/ stride_size)VALID:output_shape = ceil((input_shape + kernel_shape - 1) / stride_size)池化:池化没有参数,除非使用tf.nn.max_pool_with_argmax_...原创 2019-08-13 17:52:55 · 407 阅读 · 0 评论