《Visualizing and Understanding Convolutional Networks》反卷积可视化
反卷积由unpool层+relu层+filter卷积的转置构成。
越高层提取的特征需要训练的时间越长。
卷积网络对左右平移和翻转具有不变性,但旋转不具有。
可以使用随意遮盖统计最可能的特征关注点。
高层卷积一般有更具区分性的特征,说明综合的卷积层次不能太少,没有卷积只有全连接层的网络效果不佳。相反,只有卷积没有全连接层影响不会那么大。
《STRIVING FOR SIMPLICITY:THE ALL CONVOLUTIONAL NET》反传播可视化
本论文结合了反卷积和反向传播使用的guided backpropagation可视化。
反卷积可视化对于池化层需要用到池化保留位置标志,而guided backpropagation甚至可以用在没有池化保留位置标志的CNN上。
guided backpropagation比反卷积提取出来的轮廓更明显锐利。
没有最大池化层和激活函数用卷积降采样也能起到较好效果。最大池化不总是能提高CNN模型性能。
低层卷积不能提取到Gabor过滤器提取到的纹理,需要高层。