CNN可视化总结

《Visualizing and Understanding Convolutional Networks》反卷积可视化

反卷积由unpool层+relu层+filter卷积的转置构成。

越高层提取的特征需要训练的时间越长。

卷积网络对左右平移和翻转具有不变性,但旋转不具有。

可以使用随意遮盖统计最可能的特征关注点。

高层卷积一般有更具区分性的特征,说明综合的卷积层次不能太少,没有卷积只有全连接层的网络效果不佳。相反,只有卷积没有全连接层影响不会那么大。

 

《STRIVING FOR SIMPLICITY:THE ALL CONVOLUTIONAL NET》反传播可视化

本论文结合了反卷积和反向传播使用的guided backpropagation可视化。

反卷积可视化对于池化层需要用到池化保留位置标志,而guided backpropagation甚至可以用在没有池化保留位置标志的CNN上。

guided backpropagation比反卷积提取出来的轮廓更明显锐利。

没有最大池化层和激活函数用卷积降采样也能起到较好效果。最大池化不总是能提高CNN模型性能。

低层卷积不能提取到Gabor过滤器提取到的纹理,需要高层。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值