正态分布的简单总结

本文详细介绍了标准正态分布、多元正态分布(包括多维向量的高斯分布及其概率密度函数)以及复高斯分布的概念和特性,包括均值、方差的计算以及联合概率密度的表达。重点展示了多元正态分布的联合概率密度函数和复高斯随机变量的期望和方差计算。
摘要由CSDN通过智能技术生成

标准正态分布
x ∽ N ( 0 , 1 ) : f ( x ) = 1 2 π e − x 2 2 x \backsim N(0,1):f(x)=\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} xN(0,1):f(x)=2π 1e2x2

一般正态分布
x ∽ N ( μ , σ 2 ) : f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 x \backsim N(\mu,\sigma^2):f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} xN(μ,σ2):f(x)=2πσ2 1e2σ2(xμ)2

多维正态分布:设 x = [ x 1 , x 2 , . . . , x N ] T \boldsymbol{x}=[x_1,x_2,...,x_N]^T x=[x1,x2,...,xN]T是一个 n n n维向量,第 n n n的维度上的随机变量 x n x_n xn服从均值为 μ n \mu_n μn,方差为 σ n 2 \sigma^2_n σn2的高斯分布,即 x n ∽ N ( μ n , σ n 2 ) x_n \backsim N(\mu_n,\sigma^2_n) xnN(μn,σn2),且各个维度相互独立,则其联合概率密度等于各个维度上概率密度的乘积,所以
f ( x ) = 1 2 π σ 1 2 e − ( x 1 − μ 1 ) 2 2 σ 1 2 1 2 π σ 2 2 e − ( x 2 − μ 2 ) 2 2 σ 2 2 . . . 1 2 π σ N 2 e − ( x N − μ N ) 2 2 σ N 2 (1) f(\boldsymbol{x})=\frac{1}{\sqrt{2\pi\sigma^2_1}}e^{\frac{-(x_1-\mu_1)^2}{2\sigma^2_1}} \frac{1}{\sqrt{2\pi\sigma^2_2}}e^{\frac{-(x_2-\mu_2)^2}{2\sigma^2_2}}...\frac{1}{\sqrt{2\pi\sigma^2_N}}e^{\frac{-(x_N-\mu_N)^2}{2\sigma^2_N}} \tag{1} f(x)=2πσ12 1e2σ12(x1μ1)22πσ22 1e2σ22(x2μ2)2...2πσN2 1e2σN2(xNμN)2(1)
Σ = d i a g ( σ n 2 ) \boldsymbol{\Sigma}={\rm diag}(\sigma^2_n) Σ=diag(σn2) μ = [ μ 1 , . . . , μ N ] T \boldsymbol{\mu}=[\mu_1,...,\mu_N]^T μ=[μ1,...,μN]T,则 x − μ = [ x 1 − μ 1 , . . . , x N − μ N ] T \boldsymbol{x}-\boldsymbol{\mu}=[x_1-\mu_1,...,x_N-\mu_N]^T xμ=[x1μ1,...,xNμN]T,则有
2 π σ 1 2 2 π σ 1 2 . . . 2 π σ N 2 = ( 2 π ) N / 2 [ d e t ( Σ ) ] 1 / 2 (2) \sqrt{2\pi\sigma^2_1}\sqrt{2\pi\sigma^2_1}...\sqrt{2\pi\sigma^2_N}=(2\pi)^{N/2}[{\rm det}(\boldsymbol{\Sigma})]^{1/2} \tag{2} 2πσ12 2πσ12 ...2πσN2 =(2π)N/2[det(Σ)]1/2(2)
− ( x 1 − μ 1 ) 2 2 σ 1 2 + . . . + − ( x N − μ N ) 2 2 σ N 2 = − ( x − μ ) T Σ − 1 ( x − μ ) (3) \frac{-(x_1-\mu_1)^2}{2\sigma^2_1}+...+\frac{-(x_N-\mu_N)^2}{2\sigma^2_N}=-(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \tag{3} 2σ12(x1μ1)2+...+2σN2(xNμN)2=(xμ)TΣ1(xμ)(3)
( 2 ) ( 3 ) (2)(3) (2)(3)代入 ( 1 ) (1) (1)可以得到
f ( x ) = 1 ( 2 π ) N / 2 [ d e t ( Σ ) ] 1 / 2 e − ( x − μ ) T Σ − 1 ( x − μ ) (4) f(\boldsymbol{x})=\frac{1}{(2\pi)^{N/2}[{\rm det}(\boldsymbol{\Sigma})]^{1/2}}e^{-(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} \tag{4} f(x)=(2π)N/2[det(Σ)]1/21e(xμ)TΣ1(xμ)(4)

复高斯分布:设 X ∽ N ( μ x , σ x 2 ) X \backsim N(\mu_x,\sigma^2_x) XN(μx,σx2) Y ∽ N ( μ y , σ y 2 ) Y \backsim N(\mu_y,\sigma^2_y) YN(μy,σy2),若 X X X Y Y Y统计独立,则其联合概率密度函数可表示为:
f X Y ( x , y ) = 1 2 π σ x 2 e − ( x − μ x ) 2 2 σ x 2 1 2 π σ y 2 e − ( y − μ y ) 2 2 σ y 2 (5) f_{XY}(x,y)=\frac{1}{\sqrt{2\pi\sigma^2_x}}e^{\frac{-(x-\mu_x)^2}{2\sigma^2_x}} \frac{1}{\sqrt{2\pi\sigma^2_y}}e^{\frac{-(y-\mu_y)^2}{2\sigma^2_y}} \tag{5} fXY(x,y)=2πσx2 1e2σx2(xμx)22πσy2 1e2σy2(yμy)2(5)

μ x = μ y \mu_x=\mu_y μx=μy σ = σ x 2 = σ y 2 \sigma=\sigma^2_x=\sigma^2_y σ=σx2=σy2,则上式就可以化简为
f X Y ( x , y ) = 1 2 π σ 2 e − ( x − μ ) 2 + ( y − μ ) 2 2 σ 2 (6) f_{XY}(x,y)=\frac{1}{2\pi\sigma^2}e^{-\frac{(x-\mu)^2+(y-\mu)^2}{2\sigma^2}} \tag{6} fXY(x,y)=2πσ21e2σ2(xμ)2+(yμ)2(6)

对应的复随机变量 Z = X + i Y Z=X+iY Z=X+iY称为复高斯随机变量。 Z Z Z的均值 μ z \mu_z μz和方差 σ z \sigma_z σz分别为:
μ z = E [ Z ] = E [ X + i Y ] = E [ X ] + i E [ Y ] = μ x + i μ y = μ + i μ \mu_z={\rm E}[Z]={\rm E}[X+iY]={\rm E}[X]+i{\rm E}[Y]=\mu_x+i\mu_y=\mu+i\mu μz=E[Z]=E[X+iY]=E[X]+iE[Y]=μx+iμy=μ+iμ
σ z = E [ ( Z − μ z ) ( Z − μ z ) ′ ] = E [ ∣ ( X − μ x ) + i ( Y − μ y ) ∣ 2 ] = E [ ( X − μ x ) 2 ] + E [ ( Y − μ y ) 2 ] = σ x 2 + σ y 2 = 2 σ 2 \sigma_z={\rm E}[(Z-\mu_z)(Z-\mu_z)']={\rm E}[|(X-\mu_x)+i(Y-\mu_y)|^2]={\rm E}[(X-\mu_x)^2]+{\rm E}[(Y-\mu_y)^2]=\sigma^2_x+\sigma^2_y=2\sigma^2 σz=E[(Zμz)(Zμz)]=E[(Xμx)+i(Yμy)2]=E[(Xμx)2]+E[(Yμy)2]=σx2+σy2=2σ2
μ z \mu_z μz σ z \sigma_z σz代入 ( 6 ) (6) (6)可以得到 Z Z Z的概率密度函数为
f Z ( z ) = 1 π σ z 2 e − ( z − μ z ) 2 σ z 2 (7) f_Z(z)=\frac{1}{\pi\sigma_z^2}e^{-\frac{(z-\mu_z)^2}{\sigma_z^2}} \tag{7} fZ(z)=πσz21eσz2(zμz)2(7)

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值