次序统计量的概率密度函数

次序统计量的概率密度函数
首先给出次序统计量的概念:

X 1 , . . . , X n X_1,...,X_n X1,...,Xn​是从总体中抽样得到的样本,将其按从小到大的顺序进行排列,得到一组有序的样本值 X ( 1 ) , . . . , X ( n ) X_{(1)},...,X_{(n)} X(1),...,X(n),其中 X ( 1 ) ≤ X ( 2 ) ≤ . . . ≤ X ( n ) X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)} X(1)X(2)...X(n),则 X ( k ) X_{(k)} X(k)为其中单个次序统计量。以下采用两种方法推导 X ( k ) X_{(k)} X(k)​的概率密度函数​。

(1)基于分布函数的推导思路

根据分布函数的定义有 F X ( k ) ( x ) = P ( X ( k ) ≤ x ) F_{X_{(k)}}(x)=P(X_{(k)} \leq x) FX(k)(x)=P(X(k)x),即次序统计量 X ( k ) X_{(k)} X(k)的分布函数为事件 X ( k ) X_{(k)} X(k)小于等于 x x x的概率,由于 [ X ( 1 ) , . . . , X ( k ) , . . . , X ( n ) ] [X_{(1)},...,X_{(k)},...,X_{(n)}] [X(1),...,X(k),...,X(n)]是一个有序样本序列,因此,下列子事件均能引起事件 X ( k ) ≤ x X_{(k)} \leq x X(k)x的发生:

k k k X ( i ) X_{(i)} X(i)的值不大于 x x x; 有 k + 1 k+1 k+1 X ( i ) X_{(i)} X(i)的值不大于 x x x;… 有 n n n X ( i ) X_{(i)} X(i)的值不大于 x x x

所以:
F X ( k ) ( x ) = P ( X ( k ) ≤ x ) = ∑ i = k n [ 有 i 个 X ( i ) 不大于 x ] = ∑ i = k n ( n i ) [ F ( x ) ] i [ 1 − F ( x ) ] n − i (1) \begin{equation} \begin{aligned} F_{X_{(k)}}(x)&=P(X_{(k)} \leq x)=\sum_{i=k}^n{[有i个X_{(i)}不大于x]}=\sum_{i=k}^n{\begin{pmatrix} n \\ i \end{pmatrix} [F(x)]^i [1-F(x)]^{n-i}} \end{aligned} \end{equation}\tag{1} FX(k)(x)=P(X(k)x)=i=kn[iX(i)不大于x]=i=kn(ni)[F(x)]i[1F(x)]ni(1)
在上面的表达式中, F ( x ) F(x) F(x)​​表示总体样本的分布函数,则次序统计量 X ( k ) X_{(k)} X(k)​的概率密度函数可以通过对(1)进行求导得到,在化简过程中用到了以下等式关系:

∑ i = k n ( n i ) P i ( 1 − P ) n − i = k ( n k ) ∫ 0 P t k − 1 ( 1 − t ) n − k d t (2) \sum_{i=k}^n{\begin{pmatrix} n \\ i \end{pmatrix} P^i (1-P)^{n-i}}=k \begin{pmatrix} n \\ k \end{pmatrix} \int_0^P{t^{k-1}(1-t)^{n-k}dt}\tag{2} i=kn(ni)Pi(1P)ni=k(nk)0Ptk1(1t)nkdt(2)

现在来证明(2)式,将等式左右两边对 P P P​求导,对右边求导得到

d [ k ( n k ) ∫ 0 P t k − 1 ( 1 − t ) n − k d t ] d P = k ( n k ) P k − 1 ( 1 − P ) n − k (3) \frac{d[k \begin{pmatrix} n \\ k \end{pmatrix} \int_0^P{t^{k-1}(1-t)^{n-k}dt}]}{dP}=k \begin{pmatrix} n \\ k \end{pmatrix} P^{k-1}(1-P)^{n-k}\tag{3} dPd[k(nk)0Ptk1(1t)nkdt]=k(nk)Pk1(1P)nk(3)

对左边等式求导得到:

d [ ∑ i = k n ( n i ) P i ( 1 − P ) n − i ] d P = ∑ i = k n ( n i ) [ i P i − 1 ( 1 − P ) n − i − ( n − i ) P i ( 1 − P ) n − i − 1 ] = k ( n k ) P k − 1 ( 1 − P ) n − k − ( n − k ) ( n k ) P k ( 1 − P ) n − k − 1 + ( k + 1 ) ( n k + 1 ) P k ( 1 − P ) n − k − 1 − ( n − k − 1 ) ( n k + 1 ) P k + 1 ( 1 − P ) n − k − 2 + . . . = n ! ( k − 1 ) ! ( n − k ) ! P k − 1 ( 1 − P ) n − k − n ! k ! ( n − k − 1 ) ! P k ( 1 − P ) n − k − 1 + n ! k ! ( n − k − 1 ) ! P k ( 1 − P ) n − k − 1 − n ! ( k + 1 ) ! ( n − k − 2 ) ! P k + 1 ( 1 − P ) n − k − 2 + . . . = n ! ( k − 1 ) ! ( n − k ) ! P k − 1 ( 1 − P ) n − k = k ( n k ) P k − 1 ( 1 − P ) n − k (4) \begin{equation} \begin{aligned} &\frac{d[\sum_{i=k}^n{\begin{pmatrix} n \\ i \end{pmatrix} P^i (1-P)^{n-i}}]}{dP}=\sum_{i=k}^n{\begin{pmatrix} n \\ i \end{pmatrix} [i P^{i-1}(1-P)^{n-i}-(n-i)P^i (1-P)^{n-i-1}]}\\ &=k \begin{pmatrix} n \\ k \end{pmatrix} P^{k-1}(1-P)^{n-k}-(n-k)\begin{pmatrix} n \\ k \end{pmatrix} P^k (1-P)^{n-k-1}\\ &+(k+1)\begin{pmatrix} n \\ k+1 \end{pmatrix} P^k (1-P)^{n-k-1}-(n-k-1)\begin{pmatrix} n \\ k+1 \end{pmatrix}P^{k+1}(1-P)^{n-k-2}+...\\ &=\frac{n!}{(k-1)!(n-k)!}P^{k-1}(1-P)^{n-k}{-\frac{n!}{k!(n-k-1)!}P^k (1-P)^{n-k-1}}\\ &{+\frac{n!}{k!(n-k-1)!}P^k(1-P)^{n-k-1}}-\frac{n!}{(k+1)!(n-k-2)!}P^{k+1}(1-P)^{n-k-2}+...\\ &=\frac{n!}{(k-1)!(n-k)!}P^{k-1}(1-P)^{n-k}=k\begin{pmatrix} n \\ k \end{pmatrix} P^{k-1}(1-P)^{n-k} \end{aligned} \end{equation}\tag{4} dPd[i=kn(ni)Pi(1P)ni]=i=kn(ni)[iPi1(1P)ni(ni)Pi(1P)ni1]=k(nk)Pk1(1P)nk(nk)(nk)Pk(1P)nk1+(k+1)(nk+1)Pk(1P)nk1(nk1)(nk+1)Pk+1(1P)nk2+...=(k1)!(nk)!n!Pk1(1P)nkk!(nk1)!n!Pk(1P)nk1+k!(nk1)!n!Pk(1P)nk1(k+1)!(nk2)!n!Pk+1(1P)nk2+...=(k1)!(nk)!n!Pk1(1P)nk=k(nk)Pk1(1P)nk(4)

从(4)可以看出展开式前一项的后半部分和后一项的前半部分可以相消,所以最终仅保留第一项的前半部分和最后一项的后半部分,显然得到(2)中左右两个式子对 P P P的导数是相等的。当然,导数相等并不能证明原函数就是相等的(原函数加减常数的导数仍然保持相等),只需要取一个 P P P值代进去看左右两端是否相等即可。显然可以证明(2)是成立的。
利用(2)可以得到:

F X ( k ) ( x ) = k ( n k ) ∫ 0 F ( x ) t k − 1 ( 1 − t ) n − k d t (5) F_{X_{(k)}}(x)=k\begin{pmatrix} n \\ k \end{pmatrix} \int_0^{F(x)}{t^{k-1}(1-t)^{n-k}dt}\tag{5} FX(k)(x)=k(nk)0F(x)tk1(1t)nkdt(5)

所以

f X ( k ) ( x ) = k ( n k ) [ F ( x ) ] k − 1 [ 1 − F ( x ) ] n − k f ( x ) (6) f_{X_{(k)}}(x)=k\begin{pmatrix} n \\ k \end{pmatrix} [F(x)]^{k-1}[1-F(x)]^{n-k}f(x)\tag{6} fX(k)(x)=k(nk)[F(x)]k1[1F(x)]nkf(x)(6)

(2)基于概率密度元的推导方法
在推导之前我们先给出概率密度函数的一种计算方法

f ( x ) = lim ⁡ Δ x → 0 P ( x < X ≤ x + Δ x ) Δ x = lim ⁡ Δ x → 0 F ( x + Δ x ) − F ( x ) Δ x (7) f(x)=\lim_{\Delta x \to 0}{\frac{P(x< X \leq x+\Delta x)}{\Delta x}}=\lim_{\Delta x \to 0}{\frac{F(x+\Delta x)-F(x)}{\Delta x}}\tag{7} f(x)=Δx0limΔxP(x<Xx+Δx)=Δx0limΔxF(x+Δx)F(x)(7)

由上面的定义可知

f X ( k ) ( x ) = lim ⁡ Δ x → 0 P ( x < X ( k ) ≤ x + Δ x ) Δ x (8) f_{X_{(k)}}(x)=\lim_{\Delta x \to 0}{\frac{P(x < X_{(k)} \leq x+\Delta x)}{\Delta x}}\tag{8} fX(k)(x)=Δx0limΔxP(x<X(k)x+Δx)(8)

事件 x < X ( k ) ≤ x + Δ x x < X_{(k)} \leq x+\Delta x x<X(k)x+Δx,等价于:有 k − 1 k-1 k1个样本值小于 x x x,有一个样本值在 x x x x + Δ x x+\Delta x x+Δx之间,有 n − k n-k nk个样本值大于 x + Δ x x+\Delta x x+Δx。上述三个子事件对应的情况数及概率分别可以表示为: ( n k − 1 ) [ F ( x ) ] k − 1 , ( n − k + 1 1 ) [ F ( x + Δ x ) − F ( x ) ] , ( n − k n − k ) [ 1 − F ( x + Δ x ) ] n − k \begin{pmatrix} n \\ k-1 \end{pmatrix}[F(x)]^{k-1},\begin{pmatrix} n-k+1 \\ 1 \end{pmatrix} [F(x+\Delta x)-F(x)],\begin{pmatrix} n-k \\ n-k \end{pmatrix}[1-F(x+\Delta x)]^{n-k} (nk1)[F(x)]k1,(nk+11)[F(x+Δx)F(x)],(nknk)[1F(x+Δx)]nk,所以

P ( x < X ( k ) ≤ x + Δ x ) = ( n k − 1 ) ( n − k + 1 1 ) ( n − k n − k ) [ F ( x ) ] k − 1 [ F ( x + Δ x ) − F ( x ) ] [ 1 − F ( x + Δ x ) ] n − k (9) P(x < X_{(k)} \leq x+\Delta x)=\begin{pmatrix} n \\ k-1 \end{pmatrix} \begin{pmatrix} n-k+1 \\ 1 \end{pmatrix} \begin{pmatrix} n-k \\ n-k \end{pmatrix} [F(x)]^{k-1} [F(x+\Delta x)-F(x)][1-F(x+\Delta x)]^{n-k}\tag{9} P(x<X(k)x+Δx)=(nk1)(nk+11)(nknk)[F(x)]k1[F(x+Δx)F(x)][1F(x+Δx)]nk(9)

所以

f X ( k ) ( x ) = ( n k − 1 ) ( n − k + 1 1 ) ( n − k n − k ) [ F ( x ) ] k − 1 lim ⁡ Δ x → 0 [ F ( x + Δ x ) − F ( x ) ] [ 1 − F ( x + Δ x ) ] n − k Δ x = k ( n k ) [ F ( x ) ] k − 1 [ 1 − F ( x ) ] n − k f ( x ) (10) \begin{equation} \begin{aligned} f_{X_{(k)}}(x)&=\begin{pmatrix} n \\ k-1 \end{pmatrix} \begin{pmatrix} n-k+1 \\ 1 \end{pmatrix} \begin{pmatrix} n-k \\ n-k \end{pmatrix}[F(x)]^{k-1} \lim_{\Delta x \to 0}{\frac{[F(x+\Delta x)-F(x)][1-F(x+\Delta x)]^{n-k}}{\Delta x}}\\ &=k\begin{pmatrix} n \\ k \end{pmatrix} [F(x)]^{k-1} [1-F(x)]^{n-k} f(x) \end{aligned} \end{equation}\tag{10} fX(k)(x)=(nk1)(nk+11)(nknk)[F(x)]k1Δx0limΔx[F(x+Δx)F(x)][1F(x+Δx)]nk=k(nk)[F(x)]k1[1F(x)]nkf(x)(10)

  • 12
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值