Reinforcement learning an introduction example 6.2 i.e. exercise 6.6

博客探讨了贝尔曼方程在马尔科夫决策过程中的应用,特别是在一个特定问题中计算状态值的问题。通过详细分析和数学推导,解释了为何在简化假设下直接使用概率1和均匀分布的策略无法得到正确结果。文章指出,正确理解状态转移概率p的重要性,并通过一系列计算展示了如何在考虑折扣和奖励的情况下确定状态值。最终得出结论,即使在简化的环境中,精确计算仍是必要的,并给出了具体案例的解决方案。
摘要由CSDN通过智能技术生成

在第二版的p125中有写道:

Thus, the true values of all the states, A through E, are 1 6 \frac{1}{6} 61, 2 6 \frac{2}{6} 62, 3 6 \frac{3}{6} 63, 4 6 \frac{4}{6} 64, and 1 6 \frac{1}{6} 61.

那么这些结果哪里来的。在本书大部分的时间里,value可以由Bellman equation获得:
v π ( s ) = ∑ a π ( a ∣ s ) ∑ s ′ , r p ( s ′ , r ∣ s , a ) [ r + γ v π ( s ′ ) ] v_\pi(s) = \sum_a\pi(a|s)\sum_{s',r}p(s',r|s,a)[r+\gamma v_\pi(s')] vπ(s)=aπ(as)s,rp(s,rs,a)[r+γvπ(s)]

在上式中,我们想要求得的是 v v v,但这伴随的未知量还包括p。
对于给定的一个s,四元函数p如果简简单单地记成1,并且把 π \pi π也写成0.5的话,并不能获得正确的答案。
因为书中写道,

… then proceed either left or right by one state on each step, with equal probability.

所以 π ( a ∣ s ) \pi(a|s) π(as)的取值应该没问题,
所以我认为,问题就在于四元函数p

给定了s和动作a,获得相应的s’和r的概率怎么就不是1了呢?换言之,这个里的s’和r难道不一定是立即可能的state和reward的了吗?

我联想到了Exercise 3.14,在那里,书中写道:

… show numerically that this equation holds for the center state, valued at +0.7, with respect to its four neighboring states, valued at …

应用上述的bellman equation,并且结合网上的答案,可以知道,仅就四个周边而言,反推得到的center的value值是:
1 4 × 1 × 0.9 × ( 0.4 − 0.4 + 2.3 + 0.7 ) = 0.675 ≠ 0.7 \frac{1}{4}\times1\times0.9\times(0.4-0.4+2.3+0.7)=0.675\neq0.7 41×1×0.9×(0.40.4+2.3+0.7)=0.675=0.7
我猜测,这个里的误差不仅源于数位保留的缘故(诚如在题干后边写的那样:

These numbers are accurate only to one decimal place.)

还应该在于,这里的四元函数p被默认为1了。这给人一种思考:是不是说,给定同样的状态和动作,并不是邻近的状态平均分享那四元函数?只不过它的比重接近但不一定完全一样而已。

那这样的话,如果有精确的计算,就不准确了。
但好在这个问题有一些好处:

  • discount = 0
  • reward = 0 except at the right end.

因此,以E为例, v π ( E ) = 0.5 × p ( R , 1 ∣ E , rightward ) × ( 1 + 1 × 1 ) v_\pi(E)=0.5\times p(R,1| E, \text{rightward})\times(1+1\times1) vπ(E)=0.5×p(R,1E,rightward)×(1+1×1)也就等于
p ( R , 1 ∣ E , rightward ) p(R,1| E, \text{rightward}) p(R,1E,rightward)

那么怎么求这个东西呢?
这个问题的一大特点,它是episodic,也就是说对于所有的情况,总共只有两种可能,一个是终结于左端,一个是终结于右端。那这样的情况是容易进行干净的分类讨论的。
参考了网上的答案,可以这样做:
首先,把 p ( R , 1 ∣ E , rightward ) p(R,1| E, \text{rightward}) p(R,1E,rightward)记作 P E ( R ) P_E(R) PE(R),意味终结于右端的那种可能情形;进而,终结于左端的可能情形记作 P E ( L ) P_E(L) PE(L)。注意,这里求出两种终端情形的概率并不难,巧的是 P E ( R ) P_E(R) PE(R)正好就是 p ( R , 1 ∣ E , rightward ) p(R,1| E, \text{rightward}) p(R,1E,rightward)而已。

P E ( R ) + P E ( L ) = 1 P_E(R)+P_E(L) = 1 PE(R)+PE(L)=1
进而展开 P E ( L ) P_E(L) PE(L):
P E ( L ) = P D ( L ) × P E ( D ) P_E(L)=P_D(L) \times P_E(D) PE(L)=PD(L)×PE(D)
已知 P E ( D ) = 0.5 P_E(D)=0.5 PE(D)=0.5,继续展开 P D ( L ) P_D(L) PD(L):
P D ( L ) = P D ( C ) × P C ( L ) + P D ( E ) × P E ( L ) P_D(L)=P_D(C) \times P_C(L) + P_D(E) \times P_E(L) PD(L)=PD(C)×PC(L)+PD(E)×PE(L)
根据对称性, P C ( L ) = 0.5 P_C(L)=0.5 PC(L)=0.5
又, P D ( C ) = 0.5 P_D(C)=0.5 PD(C)=0.5,综上形成闭环。
求得 P E ( R ) = 5 6 P_E(R)=\frac{5}{6} PE(R)=65
因此 v π ( E ) = 5 6 v_\pi(E)=\frac{5}{6} vπ(E)=65
根据对称性, v π ( A ) = 5 6 v_\pi(A)=\frac{5}{6} vπ(A)=65
接下来,
P D ( R ) = P D ( E ) × P E ( R ) + P D ( C ) × P C ( R ) = 2 3 ≡ 4 6 P_D(R)=P_D(E) \times P_E(R) + P_D(C) \times P_C(R) =\frac{2}{3} \equiv \frac{4}{6} PD(R)=PD(E)×PE(R)+PD(C)×PC(R)=3264
因此 v π ( D ) = 4 6 v_\pi(D)=\frac{4}{6} vπ(D)=64
同样根据对称性, v π ( B ) = 2 6 v_\pi(B)=\frac{2}{6} vπ(B)=62

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值