Compressed Sparse Row (CSR)行压缩存储相关错误概念纠正

本文揭示了在理解稀疏矩阵压缩存储(如CSR格式)时,行偏移数组(ia)并不总是存储第一个非零元素的偏移,而是指示非零元素在ja和a数组中的分布范围。这允许非零元素在对应行内的顺序具有一定的灵活性,不局限于从左到右的顺序。这一洞察纠正了对稀疏矩阵存储常见误解,并强调了实际应用中的多样性和灵活性。
摘要由CSDN通过智能技术生成

之前关于矩阵压缩存储的知识都是网上看的,比如这篇

稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB

里面对ia数组,即行偏移数组的表述是这样的。强调了ia数组中存的是某行的第一个元素的偏移。

今天测试一个国外数学教授开源的AGMG库时才发现如果按之前的理解,还原后的矩阵将和理论上的无法统一。

翻看维基发现,CSR的ia定义并没有说其存储的是第一个元素的偏移信息。ia只是存储了非零行的start索引,这里的start与该行第一个非零元在ja和a中的索引没有关系,其实只是表示了该行中的非零元对应的col值和val值分布在ja[row_start]~ja[row_end],a[row_start]~a[row_end]之间。也就是说,该行中的非零元对应的col和val在ja和a中的顺序可以是随意的,不是必须从左到右,即对应col值从小到大。

以第一幅图的矩阵为例

1700
0280
5039
0604

按之前片面的理解,ia,ja,a只能固定格式如下,(用0做基)

ia: 0 2 4 7 9

ja: 0 1 1 2 0 2 3 1 3

a:  1 7 2 8 5 3 9 6 4

其实还可以这么写

ia: 0 2 4 7 9

ja: 1 0 2 1 3 2 0 3 1

a:  7 1 8 2 9 3 5 4 6

虽然ia一样,但每行的非零元们在ja和a中属于该行的slice中的索引排序不分先后。

之所以出现之前的片面理解是因为我们习惯了矩阵的Z字形读法,都按第一种来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值