A Subset Mex
mexA和mexB的最大,其中必有一个原数组中第一个缺失的数,另一个数是剩下中第一个缺失的数。
代码:
#include <bits/stdc++.h>
#include <algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
int a[105];
int vis[105];
int main(){
int t,n;
cin>>t;
while(t--){
memset(vis,0,sizeof(vis));
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
vis[a[i]]++;
}
int ans=0;
for(int i=0;i<=100;i++){
if(vis[i]==0){
ans+=i;
break;
}
vis[i]--;
}
for(int i=0;i<=100;i++){
if(vis[i]==0){
ans+=i;
break;
}
vis[i]--;
}
cout<<ans<<endl;
}
}
B Maximum Product
分三种情况,四个负数,两个负数,和没有负数,取最大值即可。
这个题目之前wa了一直找不到错误,现在知道了是因为如果宏定义的INF为0x3f3f3f3f,那么它是远小于longlong可以取到的极限值的。
代码:
#include <bits/stdc++.h>
#include <algorithm>
#include<iostream>
#include <stdio.h>
#define INF 9e19
const int maxn=1e5+5;
using namespace std;
typedef long long ll;
ll a[maxn];
int main(){
int t,n;
cin>>t;
while(t--){
memset(a,0,sizeof(a));
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
ll ans=-INF;
sort(a+1,a+1+n);
//ans=max(ans,a[1]*a[2]*a[3]*a[4]*a[5]);
ans=max(ans,a[1]*a[2]*a[3]*a[4]*a[n]);
//ans=max(ans,a[1]*a[2]*a[3]*a[n-1]*a[n]);
ans=max(ans,a[1]*a[2]*a[n-2]*a[n-1]*a[n]);
// ans=max(ans,a[1]*a[n-3]*a[n-2]*a[n-1]*a[n]);
ans=max(ans,a[n-4]*a[n-3]*a[n-2]*a[n-1]*a[n]);
cout<<ans<<endl;
}
}
c题Link Cut Centroids
dfs 树的重心
这个题目涉及到一个知识点,即树的重心,树的重心在树形dp中有涉及。
它的性质:
1.删除重心后所得的所有子树,节点数不超过原树的1/2,一棵树最多有两个重心;
2.树中所有节点到重心的距离之和最小,如果有两个重心,那么他们距离之和相等;
3.两个树通过一条边合并,新的重心在原树两个重心的路径上;
4.树删除或添加一个叶子节点,重心最多只移动一条边;
5.一棵树最多有两个重心,且相邻。
那么就可以利用性质一来确定树的重心。
首先通过邻接表来建树,用siz数组存放以u为根节点的树的节点的个数,son数组来存放去掉这个节点后剩余的节点最多的树,son[u]的大小应该就是与u相连的所有节点的siz,和n-siz[u]中的最大值。son[u]=max(son[u],siz[v]), son[u]=max(son[u],n-siz[u]);
通过搜索dfs搜索与当前节点相连的所有节点来更新siz,和son。
同时r1,r2存放可能出现的重心。当出现符合性质一的情况时,给他们赋值。
如果这棵树只有一个重心,删掉这个重心的任意一条边,再添加即可。
如果有两个重心,那么就删掉其中一个重心连接除另一重心以外的任意一点的连接边,再将另一重心和这个点相连。
代码:
#include <bits/stdc++.h>
#include <algorithm>
#include<iostream>
#include<vector>
#define INF 9e19
const int maxn=1e5+5;
using namespace std;
typedef long long ll;
vector<int>g[maxn];
int siz[maxn],son[maxn];
int n,r1,r2;
void dfs(int u,int fa){
//cout<<"?"<<endl;
siz[u]=1;
son[u]=0;
for(int i=0;i<g[u].size();i++){
int v=g[u][i];
//cout<<"?"<<endl;
if(v==fa)
continue;
dfs(v,u);
siz[u]+=siz[v];
son[u]=max(son[u],siz[v]);
}
son[u]=max(son[u],n-siz[u]);
if((son[u]<<1)<=n){
//cout<<"?"<<endl;
r2=r1;
r1=u;
}
}
int main()
{
cin.tie(0);
int t,x,y;
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n+10;i++)
g[i].clear();
memset(siz,0,sizeof(siz));
memset(son,0,sizeof(son));
for(int i=1;i<n;i++){
cin>>x>>y;
g[x].push_back(y);
g[y].push_back(x);
}
r1=r2=0;
dfs(1,0);
if(!r2){
//cout<<"?"<<endl;
int r3=g[r1][0];
//cout<<r3<<endl;
cout<<r1<<" "<<r3<<endl;
cout<<r1<<" "<<r3<<endl;
}
else{
// cout<<r2<<" "<<r1<<endl;
for(int i=0;i<g[r2].size();i++){
if(g[r2][i]==r1)
continue;
cout<<r2<<" "<<g[r2][i]<<endl;
cout<<r1<<" "<<g[r2][i]<<endl;
break;
}
}
}
}