yolov5笔记之TensorBoard数据可视化的工具

#yolov5笔记之TensorBoard数据可视化的工具
#TensorBoard数据可视化的工具

 """TensorBoard数据可视化的工具
安装
    pip install tensorboard
使用
    tensorboard --logdir=logdir     
    tensorboard --logdir ”D:\projects\pycharm_projects\yolo_v8\ultralytics-main\runs\detect\train“
   
损失函数loss曲线:
    train_loss
预测与实际数据的差距程度
准确率accuracy曲线:
    train_accuracy
     
    precision:模型预测为正的样本中,真实为正的样本的比例。精度越高,性能越好。
    recall:真实为正的样本中,被模型预测为正的样本的比例。召回率越高,性能越好。
    box_loss:与目标范围box有关,越小方框越准;
    dfl_loss:与目标检测有关,越小目标检测越准;
    cls_loss:与目标分类有关,越小分类越准;


	tensorboard可视化后x轴:epochs  # 迭代轮数
"""
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光明有我16620122910

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值