深度学习——防止过拟合

1. 模型容量

2. 划分数据集

3. 提前停止

4. 正则化

在这里插入图片描述
在这里插入图片描述

5. Dropout

在这里插入图片描述

6. 数据增强

增加数据集大小是解决过拟合最重要的途径。但是收集样本数据和标注往往是代价昂贵的,在有限的数据集上,通过数据增强技术可以增加训练的样本数量,获得一定程度上的性能提升

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值