【onnx】——模型再次解析

onnx系列:

  1. 探索onnx文件
  2. graph / node / initializer / 随记

今天再用一个超级简单的pytorch模型转成onnx作为例子。源码参考自:https://github.com/TrojanXu/onnxparser-trt-plugin-sample

核心代码,非工程项目

1. pytorch模型定义

class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel,self).__init__()

    def forward(self, input, grid):
        input += 1
        return F.grid_sample(input, grid, mode='bilinear', padding_mode='reflection', align_corners=True)

2. graph.input, graph.output, graph.node

采用onnx载入模型,再打印 graph 的 input,output,node属性。

model = onnx.load(onnx_model_file)
print(model.graph.input)
>>>
[name: "input"
type {
  tensor_type {
    elem_type: 10
    shape {
      dim {
        dim_param: "batch_size"
      }
      dim {
        dim_value: 1
      }
      dim {
        dim_value: 4
      }
      dim {
        dim_value: 4
      }
    }
  }
}
, name: "grid"
type {
  tensor_type {
    elem_type: 10
    shape {
      dim {
        dim_param: "batch_size"
      }
      dim {
        dim_value: 4
      }
      dim {
        dim_value: 4
      }
      dim {
        dim_value: 2
      }
    }
  }
}
]

print(model.graph.output)
>>>
[name: "output"
type {
  tensor_type {
    elem_type: 10
    shape {
      dim {
        dim_value: 4
      }
      dim {
        dim_value: 1
      }
      dim {
        dim_value: 4
      }
      dim {
        dim_value: 4
      }
    }
  }
}
]

print(len(model.graph.node), model.graph.node)
>>>
3
[output: "2"
name: "Constant_0"
op_type: "Constant"
attribute {
  name: "value"
  t {
    data_type: 10
    raw_data: "\000<"
  }
  type: TENSOR
}
, input: "input"
input: "2"
output: "3"
name: "Add_1"
op_type: "Add"
, input: "3"
input: "grid"
output: "output"
name: "GridSampler_2"
op_type: "GridSampler"
attribute {
  name: "aligncorners"
  i: 1
  type: INT
}
attribute {
  name: "interpolationmode"
  i: 0
  type: INT
}
attribute {
  name: "paddingmode"
  i: 2
  type: INT
}
]

可以看到

  • input是模型推理时输入的参数+conv等网络的预训练权重
  • output是模型的输出
  • node代表运算
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值