机器学习---分类、回归、聚类、降维的区别

这里写图片描述

由上图我们可以看到,机器学习分为四大块,分别是

 classification (分类),

 regression (回归), 

 clustering (聚类), 

 dimensionality reduction (降维)。

给定一个样本特征  x , 我们希望预测其对应的属性值  y , 如果  y  是离散的, 那么这就是一个分类问题,反之,如果  y  是连续的实数, 这就是一个回归问题

如果给定一组样本特征  S={xRD} , 我们没有对应的属性值  y , 而是想发掘这组样本在  D  维空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题

如果我们想用维数更低的子空间来表示原来高维的特征空间, 那么这就是降维问题

classification & regression

       无论是分类还是回归,都是想建立一个预测模型  H ,给定一个输入   x , 可以得到一个输出  y

y=H(x)

     不同的只是在分类问题中,  y  是离散的; 而在回归问题中  y  是连续的。所以总得来说,两种问题的学习算法都很类似。所以在这个图谱上,我们看到在分类问题中用到的学习算法,在回归问题中也能使用。分类问题最常用的学习算法包括 SVM (支持向量机) , SGD (随机梯度下降算法), Bayes (贝叶斯估计), Ensemble, KNN 等。回归问题也能使用 SVR, SGD, Ensemble 等算法,以及其它线性回归算法。

clustering

      聚类也是分析样本的属性, 有点类似classification, 不同的就是classification 在预测之前是知道  y  的范围, 或者说知道到底有几个类别, 而聚类是不知道属性的范围的。所以 classification 也常常被称为 supervised learning, 而clustering就被称为unsupervised learning。 
clustering 事先不知道样本的属性范围,只能凭借样本在特征空间的分布来分析样本的属性。这种问题一般更复杂。而常用的算法包括 k-means (K-均值), GMM (高斯混合模型) 等。

dimensionality reduction

      降维是机器学习另一个重要的领域, 降维有很多重要的应用, 特征的维数过高, 会增加训练的负担与存储空间, 降维就是希望去除特征的冗余, 用更加少的维数来表示特征.降维算法最基础的就是PCA了, 后面的很多算法都是以PCA为基础演化而来。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值