01背包问题----(动态规划算法)

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?


分析一波:面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。


解决办法:声明一个 大小为  m[n][c](表示当前总价值) 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为 j(没装任何物品时的容量,假设背包就那么大,只有容量 j ) 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1)j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿

      m[ i ][ j ] = m[ i-1 ][ j ] (不拿物品时,价值等于考虑第 i-1 件时的价格)

(2)j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值

     如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

     如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

     究竟是拿还是不拿,自然是比较这两种情况那种价值最大。

由此可以得到状态转移方程

if(j>=w[i])
    m[i][j]=max( m[i-1][j], m[i-1][j-w[i]]+v[i]  );
else
    m[i][j]=m[i-1][j];

例:0-1背包问题。在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储,m[i][j]数组值表示价值,背包容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。绘制

价值数组v = {8, 10, 6, 3, 7, 2},

重量数组w = {4, 6, 2, 2, 5, 1},

背包容量C = 12时对应的m[i][j]数组。

0123456789101112
1000888888888
20008810101010181818
30668814141616181824
40669914141717191924
50669914141717192124
626891114161719192124

(第一行和第一列为序号,其数值为0)

如m[2][6],在面对第2件物品,背包容量为6时,

我们可以选择不拿,那么获得价值仅为第一件物品的价值8。

即:m[ 2 ][ 6 ] = m[1 ][ 6 ] (m[ i ][ j ] = m[ i-1 ][ j ])

如果拿,就要把第一件物品拿出来,放第二件物品,价值10,那我们当然是选择拿。

即:m[2][6] = m[2-1][6-6]+10 =0+10 = 10m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]


依次类推,得到m[6][12]就是考虑所有物品,背包容量为C时的最大价值。

#include <iostream>
using namespace std;

const int N=15;

int main() {
    int v[N]={0,8,10,6,3,7,2};//注意这里多了一个前导0
    int w[N]={0,4,6,2,2,5,1};

    int m[N][N];
    int n=6,c=12;
    memset(m,0,sizeof(m));
    for(int i=1;i<=n;i++) { //注意前导第0列元素为0
        for(int j=1;j<=c;j++) {
            if(j>=w[i])
                m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]); //最优子结构
            else
                m[i][j]=m[i-1][j];
        }
    }

    for(int i=1;i<=n;i++) {    //输出序列
        for(int j=1;j<=c;j++) {
            cout<<m[i][j]<<' ';
        }
        cout<<endl;
    }

    return 0;
}

0 0 0 8 8 8 8 8 8 8 8 8
0 0 0 8 8 10 10 10 10 18 18 18
0 6 6 8 8 14 14 16 16 18 18 24
0 6 6 9 9 14 14 17 17 19 19 24
0 6 6 9 9 14 14 17 17 19 21 24
2 6 8 9 11 14 16 17 19 19 21 24

到这一步,可以确定的是可能获得的最大价值,但是我们并不清楚具体选择哪几样物品能获得最大价值

另起一个 x[ ] 数组,x[i]=0表示不拿,x[i]=1表示拿。

m[n][c]为最优值,如果m[n][c]=m[n-1][c] ,说明有没有第n件物品都一样,则x[n]=0 ; 否则 x[n]=1当x[n]=0时,由x[n-1][c]继续构造最优解;当x[n]=1时,则由x[n-1][c-w[i]]继续构造最优解。以此类推,可构造出所有的最优解。

[cpp]  view plain  copy
  1. void traceback()  
  2. {  
  3.     for(int i=n;i>1;i--)   //注意这里是2-n,没有处理i=1
  4.     {  
  5.         if(m[i][c]==m[i-1][c])  
  6.             x[i]=0;  //没拿
  7.         else  
  8.         {  
  9.             x[i]=1;  //拿了
  10.             c-=w[i];  
  11.         }  
  12.     }  
  13.     x[1]=(m[1][c]>0)?1:0;  //这里处理i=1
  14. }  

例:

某工厂预计明年有A、B、C、D四个新建项目,每个项目的投资额Wk及其 投资后的收益V如下表所示,投资总额为30万元,如何选择项目才能使总收益最大?

Project项目

Wk投资额

Vk收益

A

15

12

B

10

8

C

12

9

D

8

5

结合前面两段代码
  1. #include <iostream>  
  2. #include <cstring>  
  3. using namespace std;  
  4.   
  5. const int N=150;  
  6.   
  7. int v[N]={0,12,8,9,5};  
  8. int w[N]={0,15,10,12,8};  
  9. int x[N];  
  10. int m[N][N];  
  11. int c=30;  
  12. int n=4;  
  13. void traceback()  
  14. {  
  15.     for(int i=n;i>1;i--)  
  16.     {  
  17.         if(m[i][c]==m[i-1][c])  
  18.             x[i]=0;  
  19.         else  
  20.         {  
  21.             x[i]=1;  
  22.             c-=w[i];  
  23.         }  
  24.     }  
  25.     x[1]=(m[1][c]>0)?1:0;  
  26. }  
  27.   
  28. int main()  
  29. {    
  30.     memset(m,0,sizeof(m));  
  31.     for(int i=1;i<=n;i++)  
  32.     {  
  33.         for(int j=1;j<=c;j++)  
  34.         {  
  35.             if(j>=w[i])  
  36.                 m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);  
  37.             else  
  38.                 m[i][j]=m[i-1][j];  
  39.         }  
  40.     }
  41. /* 
  42.     for(int i=1;i<=6;i++) 
  43.     { 
  44.         for(int j=1;j<=c;j++) 
  45.         { 
  46.             cout<<m[i][j]<<' '; 
  47.         } 
  48.         cout<<endl; 
  49.     } 
  50. */  
  51.     traceback();  
  52.     for(int i=1;i<=n;i++)  
  53.         cout<<x[i];  
  54.     return 0;  
  55. }  

输出x[i]数组:0111,输出m[4][30]:22。

得出结论:选择BCD三个项目总收益最大,为22万元。


不过这种算法只能得到一种最优解,并不能得出所有的最优解。


其他人解法:空间优化

  1. #include<bits/stdc++.h>  
  2. using namespace std;  
  3. int dp[1005][1005];  
  4. int weight[1005];  
  5. int value[1005];  
  6. int main()  
  7. {  
  8.     int n,m;  
  9.     cin>>m>>n;  
  10.     memset(dp,0,sizeof(dp));//数组清空,其实同时就把边界给做了清理  
  11.     for(int i=1; i<=n; i++)  
  12.         cin>>weight[i]>>value[i];  
  13.     //从1开始有讲究的因为涉及到dp[i-1][j],从0开始会越界  
  14.     for(int i=1; i<=n; i++)//判断每个物品能否放进  
  15.     {  
  16.         for(int j=0; j<=m; j++)//对每个状态进行判断  
  17.         //这边两重for都可以倒着写,只是需要处理最边界的情况,滚动数组不一样  
  18.         {  
  19.             if(j>=weight[i])//能放进  
  20.                 dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);  
  21.   
  22.             else dp[i][j]=dp[i-1][j];//不能放进  
  23.         }  
  24.     }  
  25.     cout<<dp[n][m]<<endl;  
  26.     return 0;  
  27. }  

然后啊,我们来仔细分析分析就会发现,这个数组开销还是很大的,因为是二维的,万一哪个数据一大,分分钟内存超限,因此有了下边的解法

传说中的---------------滚动数组!!!

啊?什么是滚动数组。

说白了二维数组只是把每个物品都跑一遍,然后到最后一个物品的时候输出答案,那么过程值只是计算的时候用一次,我没必要存下来。所以用一个数组去滚动存储,然后用后一个状态的值去覆盖前面一个状态。然后形象的叫它:滚动数组(ma!dan!一点都不形象,我理解了好久)

好吧,假装很形象。

那么问题来了,怎么样用一维的去代替二维的工作,或者说怎么去思考。这是一个难点。

那么我们想,遍历物品的那个for肯定不能省去,然后里边的for也不能省。。。。那么。就把那个i给他删了吧,好像确实没啥用哦。

然后就出现了这样的代码

[cpp]  view plain  copy
  1. for(int i=1; i<=n; i++)  
  2.    {  
  3.        for(int j=weight[i]; j<=m; j++)  
  4.        {  
  5.            dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);  
  6.        }  
  7.    }  

看上去好像很厉害的样子,但是这个绝对是错的,因为第二个for里存在某个dp[j]被改动过,然后再次影响到更大的j。就像我们再对一个数组进行移位操作,一不小心就全部成了一样的数。(别笑,你们以前肯定碰到过|||- -)

额。。回到正题,上边的代码会有重复影响,确实歪打正着的碰上了另一个背包。这个另说,现在附上正确的思路。

[cpp]  view plain  copy
  1. #include<bits/stdc++.h>  
  2. using namespace std;  
  3. int dp[1005];//滚动数组的写法,省下空间省不去时间  
  4. int weight[1005];  
  5. int value[1005];  
  6. int main()  
  7. {  
  8.     int n,m;  
  9.     cin>>m>>n;  
  10.     memset(dp,0,sizeof(dp));  
  11.     for(int i=1; i<=n; i++)  
  12.         cin>>weight[i]>>value[i];  
  13.     for(int i=1; i<=n; i++)//对每个数判断,可反  
  14.     {  
  15.         for(int j=m; j>=weight[i]; j--)//这里这个循环定死,不能反,反了就是完全背包  
  16.         {  
  17.             dp[j]=max(dp[j],dp[j-weight[i]]+value[i]);//其实不断在判断最优解,一层一层的  
  18.         }  
  19.     }  
  20.     cout<<dp[m]<<endl;  
  21.     return 0;  
  22. }  
其实就是规定从m开始循环,保证了选择这个物品时,肯定不会重复使用状态。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值