poj 2773 Happy 2006(数论:欧拉函数)

给出n, k,输出与n互质的第k个正整数

这个题归根结底用到了一个性质:

gcd(a, b) == gcd(a, b+a*t) (t=0,1,2...)

所以一种方法就是找到小于n且与n互质的所有数prime[]以及其个数cnt

如果k<tot,则直接输出

否则根据上式可知存在循环节,相邻两个循环节之间相差:k/cnt*m

所以结果应该为:k/cnt*m+prime[k%(cnt-1)]

但是还要考虑一种情况k%cnt == 0

此时结果应该为:(k/cnt-1)*m+prime[cnt-1];

暴力求素数2407打表代码如下:

#include <cstdio>
#include <iostream>
#define MAXN 1001000
using namespace std;

int prime[MAXN];

int gcd(int a, int b) {
    return b ? gcd(b, a%b) : a;
}

int main(void) {
    int m, k, i, cnt;
    while(scanf("%d%d", &m, &k) != EOF) {
        cnt = 0;
        for(i=1; i<=m; ++i)
            if(gcd(m, i) == 1)
                prime[cnt++] = i;
        if(k % cnt)
            cout << k/cnt*m+prime[k%cnt-1] << endl;
        else cout << (k/cnt-1)*m+prime[cnt-1] << endl;
    }
    return 0;
}

而上面用到了求n以内与n互质的数以及个数

所以很容易想到用欧拉函数

这个题用欧拉函数要快的多得多

16ms代码如下:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#define MAXN 1001000
using namespace std;

int prime[MAXN];
bool vis[MAXN];

int euler_phi(int n) {
    int m, cnt, ans, tmp;
    m = sqrt(n+0.5);
    cnt = 0;
    ans = tmp = n;
    for(int i=2; i<=m; ++i) {
        if(n%i == 0) {
            prime[cnt++] = i;
            ans = ans/i*(i-1);
            n /= i;
            while(n%i == 0)
                n /= i;
            for(int j=i; j<=tmp; j+=i)
                vis[j] = true;
        }
    }
    if(n > 1) {
        ans = ans/n*(n-1);
        for(int j=n; j<=tmp; j+=n)
            vis[j] = true;
    } 
    return ans;
}

int get(int n) {
    int cnt = 0;
    for(int i=1; i<MAXN; ++i) {
        if(!vis[i])
            ++cnt;
        if(cnt == n)
            return i;
    }
}

int main(void) {
    int m, k;
    while(scanf("%d%d", &m, &k) != EOF) {
        if(m==1) {
            printf("%d\n", k);
            continue;
        }
        memset(vis, 0, sizeof(vis));
        int ans = euler_phi(m);
        int n = (k-1)%ans+1;
        printf("%d\n", (k-1)/ans*m+get(n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值