设某个随机变量x均值为mu,方差为var^2,若要产生同样分布的随机变量y,但使新的随机变量参数改变,均值为mu_1,方差为var_1^2,可以用如下公式进行变换:y=var_1/var*(x-mu)+mu_1,其中x为随机变量,其余为常数(原分布参数)。具体到正态分布,若要产生均值为u,方差为o^2的M*N的随机数矩阵,可以用
y=o*randn(M,N)+u得到。对于均匀分布,若要产生[a,b]区间的均匀分布的M*N的随机数矩阵,则可以用
y=rand(M,N)*(b-a)+a得到。
%=========================================%
1) rand产生的是[0,1]上的均匀分布的随机序列
2) randn产生均值为0,方差为1的高斯随机序列,也就是白噪声序列;
%=========================================%
也就是说,可以直接使用上面两个函数对原始信号添加噪声(例如y=x+rand(length(x),1)或者=x+randn(length(x),1))
2. 事实上,无论是wgn还是awgn函数,实质都是由randn函数产生的噪声
wgn函数中调用了randn函数,而awgn函数中调用了wgn函数。下面就我熟悉的“向已知信号添加某个信噪比(SNR)的高斯白噪声”来说明一下,不过如果大家阅读过awgn的实现代码就不用看下去了,呵呵。从上述可知,这个任务可以使用awgn函数实现,具体命令是:awgn(x,SNR,’measured’),命令的作用是对原信号x添加信噪比(比值)为SNR的噪声,在添加之前先估计信号x的强度。这里涉及三个问题:在awgn这个函数中,SNR是如何计算的?什么是信号的强度?awgn函数具体是如何添加噪声的?事实上,前两个问题是相关的,因为根据定义,SNR就是信号的强度除以噪声的强度,所以,首先来讲讲信号的强度。其实信号的强度指的就是信号的能量,在连续的情形就是对x平方后求积分,而在离散的情形自然是求和代替积分了。在matlab中也是这样实现的,只不过多了一个规范化步骤罢了:
sigPower = sum(abs(sig(:)).^2)/length(sig(:))这就是信号的强度。至此,SNR的具体实现也不用多说了(注:由于采用的是比值而非db,所以与下面“计算信噪比”所使用的方式不同,即没有求对数步骤)。
最后说说awgn函数具体是如何添加噪声的。事实上也很简单,在求出f的强度后,结合指定的信噪比,就可以求出需要添加的噪声的强度noisePower=sigPower/SNR。由于使用的是高斯白噪声即randn函数,而randn的结果是一个强度为1的随机序列(自己试试sum(randn(1000,1).^2)/1000就知道了,注意信号的长度不能太小)。于是,所要添加的噪声信号显然就是:sqrt(noisePower)*randn(n,1),其中n为信号长度。
3. 上面所说的都是具有分布特性(相关的)随机序列,如果需要添加不相关的随机序列,则可以使用jimin版友的方法:
%=========================================%
for i=1:100
x(i)=randn(1);
end
%=========================================%
即先产生噪声信号,后再与原信号叠加。
最后是另外的一些常见问题,整理如下:
1. Matlab中如何产生值为0,1的随机序列?【转bainhome版友】:round(rand(5))
2. Matlab中如何计算信噪比?下面的代码转自Happy教授:
%=========================================%
function snr=SNR(I,In)
% 计算信号噪声比函数
% by Qulei
% I riginal signal
% In:noisy signal(ie. Original signal + noise signal)
% snr=10*log10(sigma2(I2)/sigma2(I2-I1))
[row,col,nchannel]=size(I);
snr=0;
if nchannel==1%gray image
Ps=sum(sum((I-mean(mean(I))).^2));%signal power
Pn=sum(sum((I-In).^2));%noise power
snr=10*log10(Ps/Pn);
elseif nchannel==3%color image
for i=1:3
Ps=sum(sum((I(:,:,i)-mean(mean(I(:,:,i)))).^2));%signal power
Pn=sum(sum((I(:,:,i)-In(:,:,i)).^2));%noise power
snr=snr+10*log10(Ps/Pn);
end
snr=snr/3;
end
%=========================================%
x=sqrt(0.0965)*randn(N,1);
Px=(x.'*x)/N % 验证,这里Px的求法与上面noisePower=sum(abs(Y-X).^2)/length(Y-X)的求法是一致的
2. N=1000;
y=wgn(N,1,10*log10(0.0965));
Py=(y.'*y)/N % 验证
信噪比,英文名称叫做SNR或S/N(Signal Noise Ratio),是指系统中信号与噪声的比例。信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。
信噪比的计量单位是dB,其计算方法是10LOG(Ps/Pn),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LOG(Vs/Vn),Vs和Vn分别代表信号和噪声电压的“有效值”。信噪比应该越高越好。
===============================================