POJ 2356 find multiple 鸽巢原理


POJ 2356 find multiple

题意:

输入一个正整数 N ,接着输入 N 和 正整数 nums[1], nums[2], ... ... , nums[N],

试问可否从这 N 个正整数中找出一组连续的数,它们的和能被 N 整除。

思路:

鸽巢原理,构造一个序列 sums[1] = nums[1], sums[2] = nums[1] + nums[2], ... ...  

sums[N] = nums[1] + nums[2] + ... ...+ nums[N]

则 sums[1] < sums[2] < ... ... < sums[N]

此时有两种情况:

1.这 N 个 sums 中存在一个 sums[X] 能被 N 整除

2.这 N 个 sums 中没有一个能被 N 整除,则它们与 N 的余数必然在 [ 1, N - 1 ] 中,

构造 N - 1 个抽屉,其中必然有两个 sums[K], sums[L] 在一个抽屉中

即 sums[K] ≡ sums[L] mod N,所以 sums[L] - sums[K] =

 nums[K + 1] + nums[K + 2] + ... ... nums[L] ≡ 0 mod 3.


#include <iostream>
#include <vector>
#include <string.h>
using namespace std;

#define MAX_SIZE 10005

int nums[MAX_SIZE];
int sums[MAX_SIZE];
vector< int > count_vector[MAX_SIZE];


int main()
{
    sums[0] = 0;
    int ans_len = -1, ans_start, ans_end;
    int limit_num;
    
    cin >> limit_num;
    
    for( int i = 1; i <= limit_num; ++i ){
        
        cin >> nums[i];
        sums[i]     = nums[i] + sums[i - 1];
        sums[i - 1] = sums[i - 1] % limit_num;
        
    }
    
    sums[limit_num] = sums[limit_num] % limit_num;
    
    for( int i = 1; i <= limit_num; ++i ){
        if( sums[i] == 0 ){
            
            ans_len = i;
            ans_start = 1;
            ans_end = i;
            
            break;
        }
    }
    
    if( ans_len == -1 ){
        for( int i = 1; i <= limit_num; ++i ){
            
            int index = sums[i];
            count_vector[index].push_back( i );
            
            if( count_vector[index].size() > 1 ){
                ans_start = count_vector[index][0] + 1;
                ans_end   = count_vector[index][1];
                ans_len   = ans_end - ans_start + 1;
            }
        }
    }
    
    cout << ans_len << '\n';
    for( int i = ans_start; i <= ans_end; ++i ){
        cout << nums[i] << '\n';
    }
    
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值