元分析教程 | 手把手教你使用CMA 2.0

文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。

今天给大家介绍元分析软件 CMA 2.0 (Comprehensive Meta Analysis)。CMA 是一个专门用于元分析的程序,它包括三个版块:数据输入,数据分析,高分辨率图。

如果有小伙伴想学元分析,但是还不了解元分析是什么的话,可以看一看我们往期的元分析推文,帮助你更容易上手元分析 CMA 软件。

不用做实验也能发论文——带你看懂元分析

经典脑成像研究的元分析示例(决策篇)

元分析 | 精神分裂症患者认知功能的脑结构相关

元分析的安装过程十分简单,这里就不再赘述。安装好后,在桌面上的图标是这样的。

打开 CMA,选择打开一个空白的表格,单击确定

插入一列研究名称,即点击 Insert--Column for--Study names

这里以‘评估利尿剂降低子痫前期(PE)风险的能力’为例,患者被随机分配到治疗组或对照组,研究人员跟踪了每组中出现PE的人数。

插入一列处理效果(或称疗效),即点击 Insert--Column for--Effect size data 

单击两次 Next 会出来以下窗口:

这里一直点开,分别表示

  • 两组(事件数)

  • 不匹配组、前瞻性数据(如对照试验、队列研究)

  • 每组的事件和样本量

  • 单击 Finish

给这些组命名。组名称输入“Treated”和“Control”。结果输入“PE”和“Normal”,单击“OK”

此时的表格应该是这样的:

将初步研究的数据输入到第一行的白细胞中。

研究名称为:Weseley

Treated Events:14

Treated Total N:131

Control Events:14

Control Total N:136 

输入剩余数据。可手动输入,也可以将你所要研究的数据保存为“XXX.cma”格式,然后从“Files”菜单栏打开你保存的数据副本。

运行分析。即点击工具栏上的“Run Analysis”

运行结果如下:

对于每一项研究,都显示了比值比(或称 OR 值)、下限和上限、Z 值和 p 值。右边则是一个森林图,其中每个研究的比值比由一个点表示,受其置信区间的限制。上图的比值比为 1.00,表示没有治疗效果。对于大多数研究来说,比值比低于 1.00,表明接受利尿剂治疗的患者不太可能发生PE。在一些研究中,比值比高于 1.00,表明接受利尿剂治疗的患者更有可能发生PE。每个研究的置信区间边界反映了估计的精度,小规模研究的置信区间较宽,大规模研究的置信区间较窄。在这幅图中,使用了 95% 的置信区间,因此这项研究统计学上的显著性为 p<0.05,当且仅当置信区间排除了空值 1.0。该图上的黄色底线被标记为“Fixed”,显示了 13 个研究的综合效应,使用固定效应模型。即比值比为 0.67,95% 置信区间为 0.56~0.80,Z 值为 -4.45,p 值<0.000。

生成高分辨率图。即点击工具栏上的“High-resolution plot”。如下图所示

现在,是不是对 CMA 有了基本的了解?如何输入数据、如何运行分析以及如何生成高分辨率的图。然后,你可以尝试用 CMA 完成其它选项操作。比如,

①在数据输入部分,你可以:

  • 查看公式

  • 自定义显示

  • 不止使用一个格式来输入数据

     ......

②在分析部分,可以:

  • 显示额外的统计数据

  • 选择计算模型

  • 显示权重

     ......

③在高分辨率绘图部分,可以:

  • 修改研究符号

  • 修改图的宽度

  • 改变配色方案

  • 将图导出到 PPT 或 Word

     ......

①首先看数据输入部分

我们先把刚刚的高分辨率图和分析界面关闭,直接回到数据输入界面。

我们可以完成一系列未知按钮和界面的操作,比如,当我们在输入“Treated”和“Control”四列数值之后,这个黄色区域的值就自动计算出来了,是怎么计算的呢?

如何显示风险比?一般默认的显示是比值比,你也可以自定义显示。即点击Tools--Customize computed effect size display;或者右键单击黄色列--Customize computed effect size display

如何输入多种格式的数据?比如元分析的过程中可能会出现,一些研究以另一种格式呈现数据,那么这时候我们该怎么做?假设在该例子中的最后两个研究,Tervilla和Campbell已经发表了比值比和置信区间,就需要插入一组额外的列来适应这种新的数据格式。这里先把Tervilla和Campbell从数据集中删除,以便用新的格式将它们重新输入。

点击 Insert--Column for--Effect size data 

然后就会呈现这样一个对话框。注:蓝色字体表示是现有的格式(事件和样本量)。

按顺序依次点击 Dichotomous (number of events)--Computed effect sizes--Odds ratio and confidence limits--Finish,数据界面就变成如下图所示:

在屏幕的左下角有关于队列 2×2(事件)和比值比的标签。可以单击这两个标签,在两种格式之间进行切换。

为这两个研究输入如下数据。注意,不要在标有“Data format(数据格式)”的列中输入任何内容。

研究名称:Tervila

Odds ratio:2.971

Lower limit:.586

Upper limit:15.068

Confidence level:0.95

研究名称:Campbell

Odds ratio:1.145

Lower limit:0.687

Upper limit:1.908

Confidence level:0.95

这里只显示了这两个研究的数据,如果想要查看所有数据,用鼠标右键单击白色列(例如比值比列),并选择显示所有数据输入格式。

然后,所有数据显示情况如下图所示:

若要返回至正常模式,则同样用右键单击白色列,选择“Show only current data entry format”,表示仅显示当前数据输入格式。

插入额外变量列。

  • 第一个未使用的列是K

  • 双击该列标题,会显示一个对话框

  • 输入列名称

  • 指定列为调节变量“Moderator”

  • 选择数据类型(“Categorical 类别”,“Integer 整数”,或者“Decimal 小数”)

(在本例中,为“研究质量”创建一个列,并将其定义为一个类别调节变量(调节变量是可以进行疗效估计的一个研究特征)

那么,“研究质量”列就创建好了。

②数据分析部分

如何显示每个研究的权重?点击“Run analysis”后,在分析窗口的工具栏中点击“Show weights”就会显示权重列,再次点击则关闭。

选择查看疗效的其他指标。在工具栏中,选择“Risk Ratio”,然后选择“log odds Ratio”,再选择“odds Ratio”可返回至默认界面。

查看统计数据的详细信息。直接点击“Next table”;或者点击 View--Meta-analysis statistics 查看统计数据的详细信息。这个表中不仅有附加的统计信息,还包括异质性等相关信息。再次点击“Next table”则返回至分析界面。

 选择计算模型。在屏幕的左下角可以看到有“Fixed”,“Random”和“Both”标签,分别表示固定效应模型,随机效应模型和两者都呈现。

自定义显示。只保留那些我们想要在高分辨率绘图中使用到的列(因为列最少,森林图显示出的视觉效果就更好),所以可以先把权重显示关闭,右键单击比值比列,并选择 Customize basic stats

结果显示如下:

③高分辨率绘图部分

点击“High-resolution plot”,现在显示的高分辨率草图如下所示,可以继续进行修改。

关于 Proportional 和 one-sized 标识。在固定效应模型下,符号的大小与每个研究的权重成比例。

关于固定效应和随机效应。只有当你在分析过程中选择了 Both Models 时,此选项才可用。这里显示的是固定效应,每个研究的符号大小是基于固定效应权重。你可以在工具栏的 Computational options 调整当前所选择的模型。

修改标题。

调整大小和颜色。这张表上的内容都可以用右键来进行修改和调整。

导出至 Word 或 PPT。

全文完~

元分析没有想象中困难,但是有很多内容还是需要大家不断实践和带着好奇心去摸索的,我们接下来也会给大家分享更多关于元分析或其他干货知识,希望小伙伴多多关注茗创科技

### R Language Packages for Meta-Analysis Tools and Libraries For conducting meta-analyses using the R programming language, several powerful packages are available that provide comprehensive functionalities to analyze data from multiple studies. These tools facilitate statistical synthesis of results across different research works. #### `meta` Package The `meta` package offers a general framework for traditional pairwise meta-analysis of binary outcomes, continuous outcomes, or generic summary statistics[^1]. This tool supports both fixed-effect models and random-effects models, providing extensive options for heterogeneity assessment through forest plots, funnel plots, and other diagnostic measures. ```r install.packages("meta") library(meta) # Example usage: metabin(event.e, n.e, event.c, n.c, studlab=paste(study), sm="RR", method="I", comb.fixed=TRUE, comb.random=TRUE) ``` #### `metafor` Package Another essential resource is the `metafor` package which provides functions for fitting various types of mixed-effects models commonly used in meta-analytic applications[^2]. It includes methods not only for standard univariate analyses but also multilevel/multivariate extensions allowing more complex structures within datasets. ```r install.packages("metafor") library(metafor) # Fitting a Random Effects Model as an example: res <- rma(yi, vi, data=dat.hackshaw1998) summary(res) forest(res) ``` #### Additional Resources Beyond these core offerings, there exist numerous additional resources such as tutorials on interacting with specific hardware setups when necessary, unofficial binaries for extending functionality under certain operating systems like Windows, command-line utilities for managing software repositories effectively during development processes involving large-scale projects[^3], and configuration files aimed at enhancing code quality specifically tailored towards mobile application frameworks written in languages similar to Dart found in Flutter environments[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值