功能连接计算的科学选择:静息态fMRI中20种指标的全面评估

摘要

背景:在功能磁共振成像(fMRI)研究中,功能连接通常通过血氧水平依赖信号区域时间序列间的Pearson相关或偏相关来量化。然而,近期一项跨学科方法学研究提出了230余种不同类型时间序列相似性的度量指标。

目的:本研究旨在系统地评估典型功能神经成像研究结果如何随所选功能连接指标的不同而变化,并进一步探索哪些指标最能准确检测与年龄和恶性脑肿瘤相关的连接性减少,进而引发关于功能神经影像研究中评估大脑连接性最佳方法的讨论。

方法:本研究使用了四个独立的神经影像数据集来解决这两个问题,这些数据集包含来自1187名个体的多模态数据。通过分析静息态功能序列,本研究采用来自四个不同数学领域的20种代表性指标计算功能连接。此外,还利用T1和T2加权图像计算区域脑体积,基于弥散加权成像数据构建结构连接组,并通过伪连续动脉自旋标记技术测量区域脑灌注。

结果:首先,本研究结果表明,典型功能神经成像方法的结果本质上取决于所选择的功能连接指标。其次,本研究发现相关性和距离度量指标最适合检测与衰老相关的连接性减少。在这种情况下,偏相关方法的表现不如其他相关性度量方法。第三,研究显示功能连接指标的选择取决于所用扫描参数、感兴趣区域以及研究个体的差异。最后,除了本研究的主要目标外,研究还发现通过伪连续动脉自旋标记测量的脑灌注可作为反映年龄相关神经和认知衰退的稳健神经生理指标。

结论:本研究的实证评估支持了近期的功能连接性理论框架。未来的功能影像研究应全面定义研究的特定理论属性、评估该理论属性的方法学特征,并考虑可能引入偏差的混杂因素。

引言

在过去的二十年间,基于连接的方法在表征正常大脑组织结构和各种脑疾病导致的异常变化方面始终占据主导地位。在静息态功能磁共振成像(rs-fMRI)背景下,功能连接(FC)反映的是静息状态下两个或多个脑区血氧水平依赖(BOLD)信号之间的统计依赖性。在采用适当的去噪策略后,BOLD信号源自脑血流、血容量及血氧水平的变化,被视作神经活动的间接测量指标。因此,FC表征的是不同脑区之间神经激活的相似程度。不同脑区神经活动之间的统计相似性越高,则认为这两个脑区的功能连接越强。

将FC作为核心研究指标时,通常采用以下方法之一:首先,基于典型FC模式将人脑划分为几个功能网络,如默认模式网络;其次,这些脑网络也可视为沿不同空间轴分布的宏观梯度,是从青春期到成年期的发展标志物;第三,许多研究试图将特定FC模式与认知功能等行为领域相关联,旨在阐明特定脑区对人类可观测行为的影响。例如海马体与额中回之间的FC就被发现与工作记忆等多种认知过程相关;第四,为了确定病理状态的稳健生物标志物,许多方法通过比较临床样本与匹配的健康对照样本来检测特定FC模式的改变。例如特定脑网络间的异常FC已在多种神经系统疾病和精神疾病中得到证实。

值得注意的是,遵循上述四种方法的研究大多使用Pearson相关或偏相关来量化FC。由于相关系数仅能反映两个BOLD时间序列间的线性关系,近年来rs-fMRI研究提出了其他FC评估指标。因此,探索性证据表明,FC指标类型会影响最终的功能脑网络构型,包括提取的脑网络数量、规模及各网络包含的脑区。近期一项跨学科研究将230余种时间序列相似性量化指标归为六类:基础测量、距离测量、频谱测量、信息论测量、因果测量和混合测量。这些相似性指标基于不同的方法进行计算,在相异性/相似性、方向性、直接性、域或线性等数学特性上存在差异。

面对大量可用且数学特性各异的FC指标,目前尚不清楚在FC研究中,上述常用方法得出的结果是否能够独立于所选FC指标保持稳定性。因此,本文首先检验了不同FC指标对rs-fMRI研究中多种常见FC分析结果的影响。具体而言,本研究将评估默认模式网络内FC强度如何随所选的FC指标而变化,考察不同FC指标下宏观梯度的构成差异,探究海马体-前额叶FC与认知功能的关联是否在所有FC指标中保持稳定,最后研究精神分裂症患者特定脑网络间的FC与健康对照组的差异是否独立于FC指标的选择。

无论FC指标之间存在何种差异,上述广泛使用的FC统计定义都未能区分所关注的理论属性与评估该属性的方法。换言之,在许多情况下,计算两个BOLD时间序列之间的纯统计相关性时,往往无法明确其反映的是何种脑区间的生物相互作用。这一问题在精神病学样本等缺乏明确神经学指征的临床异质性群体中尤为突出。

本研究假设FC在生物学层面反映的是两个或多个脑区同步神经激活模式以实现高效信息传递的能力,而FC指标只是量化这种信号同步能力的方法。因此,研究可能降低不同脑区神经活动同步能力的因素,可作为实证方法来判断哪种FC指标最适合测量人脑连接性。正常衰老就是此类因素之一。大规模规范建模研究显示,衰老伴随着全局和局部灰质体积减少。除衰老外,恶性脑肿瘤等严重神经系统疾病也是一个值得关注的因素。恶性脑肿瘤更易侵袭周围健康脑组织,从而导致结构连接破坏。鉴于结构连接与FC之间的相互关系,本研究认为此类与年龄和肿瘤相关的灰白质组织损伤会阻碍脑区间的神经活动同步能力,从而导致晚年全局FC的下降。因此,本研究接下来将确定哪种FC指标最能反映与年龄和恶性脑肿瘤相关的连接性降低,并探究哪种FC指标能发现年龄相关连接性降低与认知衰退的关联。通过深入的多模态跨诊断研究,本研究为神经影像学领域做出了贡献,帮助学界理解除Pearson相关或偏相关外,是否还有其他指标能有效量化实证数据中的大脑连接性。

方法

研究样本

本研究基于四个不同站点采集的独立数据集。所有研究程序均遵守相关法律和机构指南,并已获得相应机构委员会的批准。这些数据集分别为心智-大脑-身体数据集(MBB)、临床深度表型队列(CDP)、人类连接组计划老年队列(HCP-Aging)、脑肿瘤连接组学数据中四例恶性肿瘤患者(BTC)。CDP和MBB数据集用于实现本研究的第一个目标,即考察不同功能连接指标对rs-fMRI研究中多种常见功能连接分析结果的影响;HCP-Aging队列、MBB数据集和BTC数据则用于实现第二个目标,旨在评估不同功能连接指标捕捉与年龄及肿瘤相关的连接性下降的能力。BTC数据集四名受试者的年龄与性别见图6、图7。

磁共振数据采集

MBB数据集采用西门子3T Magnetom Verio扫描仪(32通道头线圈)采集,扫描序列包括:磁化准备2快速梯度回波(MP2-RAGE)序列、T2加权序列、静息态功能回波平面成像(EPI)序列和扩散加权成像(DWI)序列。CDP研究采用基于HCP协议的成像方案,在西门子3T Magnetom Prisma扫描仪(32通道头线圈)上获取T1加权磁化准备快速梯度回波(MP-RAGE)序列、应用优化翻转角演变的T2加权采样完美对比(T2-SPACE)序列、静息态EPI序列和DWI序列。HCP-Aging协议包含T1加权MP-RAGE序列、T2加权SPACE序列、静息态EPI序列、DWI序列及伪连续动脉自旋标记(PCASL)序列,均在西门子3T Magnetom Prisma扫描仪(32通道头线圈)上完成采集。BTC数据集使用西门子3T Magnetom Trio MRI扫描仪(32通道头线圈)获取T1加权MP-RAGE序列、静息态功能EPI序列和多壳层高角度分辨率扩散成像(HARDI)序列。

多模态磁共振数据处理

MBB和HCP-Aging数据集的T1/T2加权图像采用FreeSurfer v7.2处理。MBB、HCP-Aging和BTC数据集的DWI序列使用MRtrix3 v3.0.3、FSL v6.0、FreeSurfer v7.2、AFNI v22.1.09及ANTS v2.3.5进行处理。HCP-Aging数据集的PCASL图像采用FSL v6.0的Oxford_ASL工具处理。所有数据集的静息态功能磁共振图像通过fMRIPrep v22.1.1进行预处理:去除前10个时间点后进行平滑处理(FWHM=6mm),利用Nilearn的clean_img函数从BOLD时间序列中回归掉全局信号、脑脊液信号、白质信号以及基于独立成分分析的运动伪影自动去除(ICA-AROMA)方法剔除噪声成分,最后使用Nilearn的maskers模块获取去噪后的BOLD时间序列。个体水平功能连接采用基于Python的pyspi模块计算了20种不同的指标。

功能连接指标选择

近期跨学科研究提出了230余种时间序列相似性/相异性量化指标,并发布了Python工具包pyspi来计算这些度量指标。本研究从中选取了静息态fMRI研究已应用的20个指标,分属四类范畴:(1)相关性指标:Pearson相关、偏相关、Spearman等级相关、肯德尔τ系数和互相关;(2)距离指标:欧氏距离、曼哈顿距离、余弦距离、基于Itakura平行四边形的约束动态时间规整以及基于Sakoe-Chiba带的约束动态时间规整(数据分析前乘以-1转换为相似性度量);(3)频域指标:相干幅值、相位相干性、锁相值、相位斜率指数和频谱格兰杰因果;(4)信息论指标:基于高斯/核函数/Kraskov-Stögbauer-Grassberger密度估计的互信息,以及基于高斯/Kraskov-Stögbauer-Grassberger密度估计的传递熵。各指标公式的详细说明请参见补充材料。

多模态神经影像结果与认知评估

如前所述,本研究的首要目标是考察功能连接指标选择对rs-fMRI研究中四种常用分析方法的影响:默认模式网络连接性研究;宏观梯度评估;海马体-前额叶功能连接与认知功能关联分析;基于病例对照比较的精神分裂症功能连接生物标志物识别。图1和图2分别展示了用于解决第一个和第二个研究问题的处理策略。

图1.第一个研究问题的多模态处理策略。

图2.第二个研究问题的多模态处理策略。

统计分析

采用R v4.2.2进行统计分析。针对第一个研究目标,本研究对MBB数据集中默认模式网络内部功能连接强度和宏观梯度构成进行了描述性评估。为检验CDP队列健康受试者海马体-前额叶功能连接与认知功能的关联是否独立于功能连接指标的选择,对每个海马体-前额叶连接和每个功能连接指标分别建立贝叶斯多元线性回归模型(因变量:BACS综合分数;预测变量:海马体-前额叶功能连接、年龄、性别)。为评估CDP队列精神分裂症患者与健康对照组之间的脑网络功能连接差异是否独立于所用功能连接指标,对每个网络间连接和每个功能连接指标分别建立贝叶斯多元线性回归模型(因变量:网络间功能连接;预测变量:组别(精神分裂症/健康对照组)、年龄、性别)。

针对第二个研究目标,本研究探索了HCP-Aging和MBB数据集中衰老与多模态神经退化及认知衰退的关联,并建立了贝叶斯多元线性回归模型(因变量:枢纽区域平均体积、平均灌注量、平均结构连接、20种功能连接指标的平均功能连接;预测变量:年龄、性别)。值得注意的是,MBB数据集采用的是二分类年龄变量(20-35岁年轻组 vs 55-80岁老年组),因该数据集仅公布了年龄段而非具体年龄。另建立贝叶斯多元线性回归模型(因变量:NIH工具箱认知综合分数;预测变量:枢纽区域平均体积、平均灌注量、平均结构连接、20种功能连接指标的平均功能连接、性别)。对肿瘤邻近区域与对侧半球对应区域之间的结构连接及各功能连接指标进行描述性比较。

使用brms包计算的贝叶斯多元线性回归中,主要检验统计量为贝叶斯因子(BF10),该指标连续量化了数据对备择假设(H1:βz≠0)相对于零假设(H0:βz=0)的支持程度。BF10值在1-3之间表示对备择假设的证据微弱,3-10之间属于中等证据,10-30属于强证据,30-100属于极强证据,超过100则可以视为决定性证据。

结果

不同功能连接指标下的默认模式网络连接性

本研究比较了20种功能连接指标在双侧半球内的绝对连接强度。基于距离指标的默认模式网络内部绝对连接强度最高,相关性指标次之,而信息论和频域指标最低。在相关性指标中,默认模式网络连接性在偏相关分析中最低。

不同功能连接指标下宏观功能梯度的构成

功能梯度模式的可视化呈现随所用功能连接指标的不同而变化(图3)。特别是相位相干性、Itakura约束的动态时间规整、频谱格兰杰因果以及Kraskov-Stögbauer-Grassberger密度估计的传递熵等指标,未能显示出Margulies等人(2016)提出的与默认模式网络相关的模式。相比之下,其余功能连接指标(尤其是相关性指标)则呈现出相似的模式特征。值得注意的是,部分指标的第一与第二梯度顺序与Margulies等人(2016)的研究结果相反。

图3.基于不同功能连接指标的第一梯度和第二梯度示例图。

不同功能连接指标下海马体-前额叶功能连接与认知之间的关联

图4A展示了从贝叶斯多元线性回归中提取的β系数与BF10值,该分析基于CDP队列健康对照组数据评估海马体-前额叶功能连接与认知的关联。结果表明,根据所选功能连接指标的不同,与认知功能显著相关的海马体-前额叶连接在数量和类型上存在差异。例如,当采用Pearson相关、Spearman相关、肯德尔τ系数、欧氏距离、曼哈顿距离、余弦距离或Sakoe-Chiba带约束的动态时间规整时,左侧海马旁回与左侧尾侧前扣带回之间更强的功能连接与更好的认知表现相关。这一发现在偏相关或其他功能连接指标中均未复现,说明功能连接指标的选择会影响大脑-行为关联的结果和解释。

图4.20种指标下,病例-对照组之间的大脑-行为关联和功能连接异常模式。

不同功能连接指标下精神分裂症的异常连接模式

图4B呈现了基于CDP研究的精神分裂症患者与健康对照组的贝叶斯回归结果,其中显示了不同脑网络间功能连接的组间差异β系数与BF10值。研究结果表明,根据所选功能连接指标的不同,检出的异常连接模式在数量与类型上均有变化。例如使用偏相关、相干幅值或锁相值时,精神分裂症患者的视觉网络与背侧注意网络之间存在超连接,而其他功能连接指标却未发现此现象。这表明功能连接指标的选择会直接影响疾病相关异常连接模式的检测结果。

功能连接指标对年龄相关连接和认知衰退的敏感性

图5与图6分别展示了年龄/认知与枢纽区域多模态神经结果之间的关联,并提取了基于HCP-Aging和MBB队列的贝叶斯回归统计量。

图5.HCP-Aging与MBB队列中年龄与多模态神经结果的关联。

图6.HCP-Aging队列中多模态神经结果与全局认知的关联。

在HCP-Aging数据集(图5A-D)中,本研究发现的决定性证据表明,随着参与者年龄的增长,其枢纽区域平均体积(图5A)、结构连接(图5B)及灌注量(图5C)呈现下降趋势。年龄对体积的影响最为显著,其次是灌注量与结构连接。这些结果验证了HCP-Aging队列存在枢纽区域多模态年龄相关的神经衰退。rs-fMRI数据显示(图5D),当采用Pearson相关、Spearman相关、肯德尔τ系数、互相关、欧氏距离或余弦距离时,均获得了决定性证据,表明枢纽区域之间的功能连接随着年龄的增长而减弱;其中,曼哈顿距离提供了极强证据,高斯互信息提供了强证据;而偏相关与Sakoe-Chiba带约束的动态时间规整仅显示微弱的证据。值得注意的是,使用相位相干性与高斯传递熵时,反而观察到功能连接与年龄呈正相关(分别获得强证据与微弱证据)。所有功能连接指标的效应量均小于其他MRI模态。

在MBB数据集(图5E-G)中,本研究发现的决定性证据表明,老年组的枢纽区域平均体积(图5E)与结构连接(图5F)比年轻参与者更低,其中体积的组间差异效应更强。rs-fMRI数据显示(图5G),当采用互相关和Itakura平行四边形约束的动态时间规整时,获得了决定性证据,即老年组枢纽区域之间的功能连接更低;Pearson相关、Spearman相关、肯德尔τ系数和余弦距离提供了强证据;欧氏距离与偏相关分别呈现中等与微弱证据。但使用Sakoe-Chiba带约束的动态时间规整、相干幅值、相位相干性、锁相值、频谱格兰杰因果及两种传递熵时,老年组反而表现出更高的功能连接。除Itakura约束的动态时间规整外,其他功能连接指标的效应量均小于其他MRI模态。

回顾HCP-Aging队列,本研究提供了极强至决定性的证据,表明枢纽区域更大的平均体积(图6A)和更高的灌注量(图6C)与该队列中的更好认知表现相关,其中灌注量与认知表现的关联更为显著。相比之下,枢纽区域之间的结构连接(图6B)未显示出这种关联。对于rs-fMRI数据(图6D),仅在使用Pearson相关、肯德尔τ系数、余弦距离和Itakura约束的动态时间规整时,发现微弱的证据表明枢纽区域之间更高的功能连接与更好的认知表现相关,但其效应量远小于结构MRI和PCASL的结果。

功能连接指标对肿瘤相关连接下降的敏感性

图7-8展示了BTC数据集中四例恶性肿瘤患者的结构连接与功能连接数据。

图7.肿瘤邻近区域与对侧等效区域的白质纤维束与功能连接的比较。

图8.肿瘤邻近区域与对侧等效区域的白质纤维束与功能连接的比较。

本研究结果显示,前三例患者肿瘤邻近区域间的平均白质纤维束数量均低于对侧等效区域(BTC数据集中的健康对照组则无此现象)。第一例患者(图7A)在使用Pearson相关、Spearman相关、肯德尔τ系数、欧氏距离、曼哈顿距离、余弦距离、Sakoe-Chiba带约束的动态时间规整或相位斜率指数时,肿瘤邻近区域的功能连接低于对侧;第二例患者(图7B)仅核密度估计互信息与两种传递熵指标显示了相应的结果,而相关性和距离指标及部分频域指标反而显示了相反效应;第三例患者(图8A)除相位相干性与Itakura约束的动态时间规整外,其他指标均未显示肿瘤邻近区域的功能连接显著低于对侧;第四例患者(图8B)与健康对照不同,其双侧半球间白质纤维束数量存在显著差异,但仅相位相干性与频谱格兰杰因果显示出相应的功能连接降低模式。

结论

综上所述,本研究首先提供了实证证据,表明在典型的fMRI研究中,所采用的功能连接指标会显著影响研究结果。其次,本研究结果表明,相关性指标和距离指标在检测与年龄和肿瘤相关的连接性衰退方面表现最佳。第三,研究发现,功能连接指标对连接衰退的敏感性受EPI序列参数的影响,并且即使是接受相同扫描序列的个体,其敏感性也可能存在差异。此外,敏感性还取决于研究中所选择的感兴趣区域。最后,研究凸显了PCASL测量的脑血流量作为衰老与认知障碍神经表征的重要价值。这些实证结果有力地支持了Reid等人(2019)提出的理论框架,表明未来基于功能连接的研究亟需更严谨地界定理论属性、方法学策略与混杂因素这三大关键维度。

参考文献:Lukas Roell, Stephan Wunderlich, David Roell, Florian Raabe, Elias Wagner, Zhuanghua Shi, Andrea Schmitt, Peter Falkai, Sophia Stoecklein, Daniel Keeser, How to measure functional connectivity using resting-state fMRI? A comprehensive empirical exploration of different connectivity metrics, NeuroImage, Volume 312, 2025, 121195, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2025.121195.

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值