摘要
本文向神经影像学研究人员介绍了扩散磁共振成像(dMRI)数据处理的概念和技术,并提供了详细的逐步指南。通过使用免费的ExploreDTI软件来处理多壳高角分辨率扩散成像数据,并基于约束反卷积生成纤维示踪图。为帮助研究人员更好地理解每个处理步骤的原理,本文提供了这些步骤的简要说明。同时,还讨论了数据处理过程中可能遇到的常见问题,并提供了解决这些问题的技巧。此外,本文还提供了一个使用开放访问AOMIC数据集处理DTI数据的分步指南,展示了同样适用于处理其他大型神经影像数据集的命令行操作。
引言
白质是指连接大脑各个区域的神经纤维,也被称为轴突。白质的健康发育对神经正常的大脑功能和认知至关重要。这个复杂的发育过程涉及多种机制,如轴突生长、髓鞘形成和突触修剪。这些过程之间错综复杂的相互作用是建立神经网络、实现大脑内部信息高效传输的关键。脑白质发育异常与一系列认知功能和精神障碍有关,包括自闭症、注意力缺陷多动障碍(ADHD)和精神分裂症。
扩散加权磁共振成像(dMRI)是一种强大的神经影像学技术,通过测量生物组织内水分子的扩散来研究白质微观结构。在白质中,水分子的扩散受到细胞膜(即髓鞘)的影响,从而定义了扩散加权对比度。这种扩散加权信号可以通过数学模型来估计潜在的微观结构,并重建白质纤维束的组织结构。在21世纪初,最常用的dMRI建模技术是扩散张量成像(DTI)。虽然DTI目前仍然是研究人员了解白质微观结构影响的关键工具,但它也存在一些局限性,例如无法准确建模交叉白质纤维区域。
近年来,dMRI采集参数的进展使得更高阶的扩散建模技术得以实现,这些技术提高了重建精度,并能够克服DTI的一些局限性。高角分辨率扩散成像(HARDI)通过获取更多的扩散方向梯度,可以估计沿单个体素内多个纤维群的微观结构特性,并提供比传统DTI框架更高的白质纤维束重建精度。dMRI在纤维束成像中的另一个进展是多b值的整合。简而言之,b值是扫描过程中扩散加权强度、持续时间和幅度的综合度量。不同强度的b值会引发不同的组织响应,这可以用来提高各种神经细胞环境的重建精度。与低b值相比,高b值对检测大脑组织中水分子的扩散更为敏感,但也更容易受到噪声和伪影的干扰。因此,多壳dMRI数据通过结合高b值图像的高信号与低b值图像的低噪声特点,实现了更高的解剖精度。
在高阶扩散模型的背景下,已经开发了如约束反卷积(CSD)、Q-ball成像以及神经突方向和扩散密度成像(NODDI)等技术。这些技术能够比DTI更准确地描述体素内水分子扩散的分布(例如,CSD的纤维方向分布函数以及DSI和Q-ball的扩散方向分布函数),并且可以用于建模包含交叉白质纤维的体素。因此,基于这些高阶模型的测量指标具有更高的准确性,能够提供临床上更具相关性的信息,而这些信息是传统的DTI模型无法获得的。总的来说,高阶扩散模型提供了关于白质纤维束微观结构和组织的更详细信息,这些信息有助于深入理解神经和精神疾病的病理生理机制。同时,本文旨在为研究人员提供全面的资源,帮助他们掌握有效且高效处理dMRI数据所需的技能和知识。
方法
数据
高级纤维方向分布建模技术(如CSD)需要特定的扩散参数。通常,对于多壳高角分辨率扩散成像(HARDI),至少需要两张b值图像(b=2500-3000s/mm2)和45个扩散加权方向,以实现白质纤维束追踪的CSD建模。下文的数据处理分步指南使用了儿童注意力项目(NICAP)研究中的扩散参数。NICAP数据可通过Lifecourse(https://lifecourse.melbournechildrens.com/cohorts/cap-and-nicap/)获取。
数据存储和计算成本
该分步指南是在一台配备Intel Core i7处理器和32GB RAM的Linux系统上,使用MATLAB R2016b运行的。ExploreDTI也可以独立运行。由于步骤9和10的处理时间较长,建议使用高性能计算机来运行这些步骤。表1显示了在启用MATLAB并行处理的情况下,每个步骤的估计处理时间。
表1.每个步骤的估计处理时间(如果多个b值数据集是单独获取的,则步骤7和步骤8是可选的)。
分步教程
接下来,本文提供了用于处理多壳HARDI数据(BIDS格式),并使用ExploreDTI软件生成基于CSD纤维追踪的分步教程。由于本指南专为神经影像学领域的初学者设计,因此采用了ExploreDTI的图形用户界面(GUI)进行操作。ExploreDTI的安装和使用指南已在用户手册中提供。由于本文使用的是BIDS格式,那么每个包含扩散数据文件的被试文件夹应包含.json、.bval、.bvec和.nii文件(详见表2)。虽然使用AOMIC数据集(https://nilab-uva.github.io/AOMIC.github.io/)无法进行高级扩散建模,但我们仍然提供了脚本示例来演示同时预处理多个被试数据的可能性(详见原文附录部分