探索MediaPipe检测人脸关键点

MediaPipe是一个由Google开源的计算机视觉框架,支持在CPU或GPU上运行,用于人脸识别、关键点检测、追踪等多种任务。在Android平台上,通过配置参数、加载模型、初始化Camera,可以实现实时流中的人脸关键点检测,并用于滤镜特效。
摘要由CSDN通过智能技术生成

MediaPipe是Google开源的计算机视觉处理框架,基于TensorFlow来训练模型,支持人脸识别、人脸关键点、目标检测追踪、图像分类、人像分割、手势识别、文本分类、语音分类等。我们可以使用CPU来推理,也可以选择GPU加速推理。在滤镜特效场景,经常需要用到人脸关键点。

 

目录

一、配置参数与模型

1、配置参数

2、检测模型 

二、工程配置

三、初始化工作

1、初始化模型

2、初始化Camera

四、检测实时流

1、检测人脸关键点

2、绘制人脸关键点

五、检测结果​​​​​​​

一、配置参数与模型

1、配置参数

检测人脸关键点的配置参数有运行模式、人脸数、最小的检测人脸置信度、最小的显示人脸置信度、最小的追踪人脸置信度、结果回调,具体如下表所示:

选项描述取值范围默认值
running_mode

IMAGE: 单个图像 

VIDEO: 视频帧

LIVE_STREAM: 实时流

{IMAGE,VIDEO,

LIVE_STREAM}

IMAGE
num_faces最多检测的人脸数大于01

min_face_detection

_confidence

人脸检测最小置信度[0.0, 1.0]0.5

min_face_presence

_confidence

人脸显示最小置信度[0.0, 1.0]0.5
min_tracking_confidence人脸追踪最小置信度[0.0, 1.0]0.5
output_face_blendshapes是否输出混合形状(用于3D人脸模型)Booleanfalse

output_facial_transformation

_matrixes

是否输出变换矩阵(用于滤镜特效)Booleanfalse
result_callback异步回调结果(LIVE_STREAM模式)ResultListener   /

2、检测模型 

检测人脸关键点分为三步:首先检测人脸,然后定位关键点,最后识别面部特征。使用到的模型如下:

  • 人脸检测模型:根据人脸关键点特征来检测人脸;
  • 人脸网格模型:包含478个坐标点的3D人脸标识;
  • 混合形状模型:预测52个混合形状的分数,表示不同表情的系数; 

二、工程配置

以Android平台为例,在gradle导入MediaPipe相关包:

implementation 'com.google.mediapipe:tasks-vision:0.10.0'

然后运行下载模型的task,并且指定模型保存路径:

project.ext.ASSET_DIR = projectDir.toString() + '/src/main/assets'
apply from: 'download_tasks.gradle'

这里用到的模型是face_landmarker,设置src和dest:

task downloadTaskFile(type: Download) {
    src 'https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/1/face_landmarker.task'
    dest project.ext.ASSET_DIR + '/face_landmarker.task'
    overwrite false
}

preBuild.dependsOn downloadTaskFile

三、初始化工作

1、初始化模型

模型的初始化包括:设置运行模式、模型路径、检测人脸数、回调结果等,示例代码如下:

    fun setupFaceLandmark() {
        val baseOptionBuilder = BaseOptions.builder()

        // 设置运行模式,默认CPU
        when (currentDelegate) {
            DELEGATE_CPU -> {
                baseOptionBuilder.setDelegate(Delegate.CPU)
            }
            DELEGATE_GPU -> {
                baseOptionBuilder.setDelegate(Delegate.GPU)
            }
        }
        // 设置模型路径
        baseOptionBuilder.setModelAssetPath(MP_FACE_LANDMARKER_TASK)

        try {
            val baseOptions = baseOptionBuilder.build()
            // 设置检测的人脸数、最小的检测人脸置信度
            val optionsBuilder =
                FaceLandmarker.FaceLandmarkerOptions.builder()
                    .setBaseOptions(baseOptions)
                    .setMinFaceDetectionConfidence(minFaceDetectionConfidence)
                    .setMinTrackingConfidence(minFaceTrackingConfidence)
                    .setMinFacePresenceConfidence(minFacePresenceConfidence)
                    .setNumFaces(maxNumFaces)
                    .setRunningMode(runningMode)

            // LIVE_STREAM模式:设置回调结果
            if (runningMode == RunningMode.LIVE_STREAM) {
                optionsBuilder
                    .setResultListener(this::returnLivestreamResult)
                    .setErrorListener(this::returnLivestreamError)
            }

            val options = optionsBuilder.build()
            faceLandmarker =
                FaceLandmarker.createFromOptions(context, options)
        } catch (e: IllegalStateException) {
            faceLandmarkerHelperListener?.onError(
                "Face Landmark failed to initialize, error: " + e.message)
        } catch (e: RuntimeException) {
            faceLandmarkerHelperListener?.onError(
                "Face Landmark failed to initialize. See error logs for details", GPU_ERROR)
        }
    }

2、初始化Camera

这里以LIVE_STREAM模式为例,Camera的初始化包括:设置像素格式、预览宽高比、绑定生命周期、关联SurfaceProvider。示例代码如下:

    private fun bindCameraUseCases() {
        val cameraProvider = cameraProvider ?: throw IllegalStateException("Camera init failed.")

        val cameraSelector =
            CameraSelector.Builder().requireLensFacing(cameraFacing).build()

        // 预览的宽高比为4:3
        preview = Preview.Builder().setTargetAspectRatio(AspectRatio.RATIO_4_3)
            .setTargetRotation(fragmentCameraBinding.viewFinder.display.rotation)
            .build()

        // 设置像素格式为RGBA_8888,预览的旋转角度
        imageAnalyzer =
            ImageAnalysis.Builder().setTargetAspectRatio(AspectRatio.RATIO_4_3)
                .setTargetRotation(fragmentCameraBinding.viewFinder.display.rotation)
                .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)
                .setOutputImageFormat(ImageAnalysis.OUTPUT_IMAGE_FORMAT_RGBA_8888)
                .build()
                .also {
                    it.setAnalyzer(backgroundExecutor) { image ->
                        // 执行检测人脸关键点
                        faceLandmarkerHelper.detectLiveStream(image, cameraFacing == CameraSelector.LENS_FACING_FRONT)
                    }
                }

        // 绑定之前,先解除绑定
        cameraProvider.unbindAll()

        try {
            // 绑定Lifecycle
            camera = cameraProvider.bindToLifecycle(
                this, cameraSelector, preview, imageAnalyzer)
            // 关联SurfaceProvider
            preview?.setSurfaceProvider(fragmentCameraBinding.viewFinder.surfaceProvider)
        } catch (exc: Exception) {
            Log.e(TAG, "bind lifecycle failed", exc)
        }
    }

四、检测实时流

1、检测人脸关键点

在检测之前,先拷贝数据,图像帧预处理,然后执行检测:

    fun detectLiveStream(
        imageProxy: ImageProxy,
        isFrontCamera: Boolean) {
        val frameTime = SystemClock.uptimeMillis()

        // 拷贝RGB数据到缓冲区
        val bitmapBuffer =
            Bitmap.createBitmap(
                imageProxy.width,
                imageProxy.height,
                Bitmap.Config.ARGB_8888
            )
        imageProxy.use { bitmapBuffer.copyPixelsFromBuffer(imageProxy.planes[0].buffer) }
        imageProxy.close()

        val matrix = Matrix().apply {
            // 图像旋转
            postRotate(imageProxy.imageInfo.rotationDegrees.toFloat())

            // 如果是前置摄像头,需要左右镜像
            if (isFrontCamera) {
                postScale(-1f, 1f, imageProxy.width.toFloat(), imageProxy.height.toFloat())
            }
        }
        val rotatedBitmap = Bitmap.createBitmap(
            bitmapBuffer, 0, 0, bitmapBuffer.width, bitmapBuffer.height,
            matrix, true)

        // 转换Bitmap为MPImage
        val mpImage = BitmapImageBuilder(rotatedBitmap).build()
        // 异步检测人脸关键点
        faceLandmarker?.detectAsync(mpImage, frameTime)
    }

2、绘制人脸关键点

检测到人脸关键点结果后,然后回调到主线程:

   override fun onResults(resultBundle: FaceLandmarkerHelper.ResultBundle) {
        activity?.runOnUiThread {
            if (_fragmentCameraBinding != null) {
                // 显示推理时长
                fragmentCameraBinding.bottomSheetLayout.inferenceTimeVal.text =
                    String.format("%d ms", resultBundle.inferenceTime)

                // 传递结果给OverlayView
                fragmentCameraBinding.overlay.setResults(
                    resultBundle.result,
                    resultBundle.inputImageHeight,
                    resultBundle.inputImageWidth,
                    RunningMode.LIVE_STREAM
                )

                // 主动触发渲染
                fragmentCameraBinding.overlay.invalidate()
            }
        }
    }

最后绘制人脸关键点,包括面部表情、轮廓:

   override fun draw(canvas: Canvas) {
        super.draw(canvas)
        if(results == null || results!!.faceLandmarks().isEmpty()) {
            clear()
            return
        }

        results?.let { faceLandmarkResult ->
            // 绘制关键点
            for(landmark in faceLandmarkResult.faceLandmarks()) {
                for(normalizedLandmark in landmark) {
                    canvas.drawPoint(normalizedLandmark.x() * imageWidth * scaleFactor,
                        normalizedLandmark.y() * imageHeight * scaleFactor, pointPaint)
                }
            }
            // 绘制线条
            FaceLandmarker.FACE_LANDMARKS_CONNECTORS.forEach {
                canvas.drawLine(
                    faceLandmarkResult.faceLandmarks()[0][it!!.start()].x() * imageWidth * scaleFactor,
                    faceLandmarkResult.faceLandmarks()[0][it.start()].y() * imageHeight * scaleFactor,
                    faceLandmarkResult.faceLandmarks()[0][it.end()].x() * imageWidth * scaleFactor,
                    faceLandmarkResult.faceLandmarks()[0][it.end()].y() * imageHeight * scaleFactor,
                    linePaint)
            }
        }
    }

五、检测结果

输入数据可以是静态图像、实时视频流、文件视频帧。输出数据有人脸边界框、人脸网格、关键点坐标。其中,人脸关键点包括:脸部轮廓、嘴巴、鼻子、眼睛、眉毛、脸颊等,属于3D的landmark模型。如下图所示:

 在人脸识别、人脸关键点基础上,还支持换脸,变成可爱的卡通效果。眨眼睛、摇头、张嘴这些表情动作,都会有实时的卡通头像变化。如下图所示:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐福记456

您的鼓励和肯定是我创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值