走进音视频的世界——RGB与YUV格式

在图像的世界里,一般使用RGB作为存储格式。而在视频的世界里,一般使用YUV作为压缩存储格式。有时候面试官会问:为什么视频使用YUV来压缩存储,而不用RGB?YUV与RGB有什么区别,两者如何转换的?常见的RGB格式有哪些,常见的YUV格式又有哪些?手机摄像头的预览格式是什么,如何转换为YUV420P的?我们带着这些问题,来揭开RGB与YUV格式的面纱。 

 

目录

一、RGB格式

1、RGBA8888

2、RGB565

3、图像的像素阵列

二、YUV格式

1、YUV420p

2、YUV420sp

3、NV21

三、RGB与YUV转换

四、NV21转换为YUV420p

五、YUV旋转


一、RGB格式

RGB是一种图像存储格式,也是三原色,取值范围[0, 255]。R代表Red红色,G代表Green绿色,B代表Blue蓝色。在openCV中,一般使用BGR格式。在图像中,一般使用32位色的ARGB(或RGBA)代表一个像素,其中A代表Alpha透明度。常见的RGB格式有RGB888、RGBA8888、RGB565等。

1、RGBA8888

关于RGBA8888格式,每个通道占8位,即一个字节。四个通道构成一个像素,总共占32位。排列顺序如下图所示:

2、RGB565

关于RGB565格式,其中R占5位,G占6位,B占5位。三个通道构成一个像素,总共占16位。排列顺序如下图所示:

3、图像的像素阵列

一张图像由宽x高的像素阵列构成,为了内存对齐,会使用stride来填充。如下图所示,由4x3构成的像素阵列,其中P代表pixel:

二、YUV格式

YUV是一种视频压缩存储格式。其中Y代表Luma亮度,U代表Chroma色度,V代表Contrast对比度。常见的YUV采样比例如下:

  • 4:4:4 表示完全采样
  • 4:2:2 表示水平2:1采样,垂直完全采样
  • 4:2:0 表示水平2:1采样,垂直2:1采样
  • 4:1:1 表示水平4:1采样,垂直完全采样

常见的YUV格式有:YUV420p、YUV420sp、NV21等。由于U和V分量都是Y分量的1/4,而RGB888的所有分量占比都是1。进一步可得,YUV整体占比是3/2,RGB整体占比是6/2,YUV所占存储空间比RGB少了3/2。因此,默认采用YUV作为视频压缩存储格式。

1、YUV420p

YUV420p属于平面存储,YUV分量占比为4:1:1,即每4个Y共享一组UV。先是Y分量,然后是U分量,最后是V分量。排列如下图所示:

2、YUV420sp

YUV420sp属于交错存储,YUV分量占比为4:1:1,即每4个Y共享一组UV。先是Y分量,然后是UV分量交错存储。排列如下图所示:

3、NV21

NV21属于交错存储,YUV分量占比为4:1:1,即每4个Y共享一组UV。Android手机摄像头预览数据默认是NV21格式。和YUV420sp的区别是,NV21是VUVU这样排列,如下图所示:

三、RGB与YUV转换

关于YUV与RGB的转换公式,可参考ITU标准:https://www.itu.int/rec/R-REC-BT.601。也可以参考维基百科:https://zh.wikipedia.org/wiki/YUV。咱们来看下转换公式:

以rgb转yuv为例,示例代码如下:

void rgb_to_yuv(int8_t *yuv, int *rgb, int width, int height) {
    int rgbIndex = 0;
    int yIndex = 0;
    int uIndex = width * height;
    int vIndex = width * height * 5 / 4;
    int R, G, B;
    float Y, U, V;

    // 遍历图像,获取所有像素点 
    for (int i = 0; i < height; i++) {
        for (int j = 0; j < width; j++) {
            // 从像素点获取R、G、B分量
            R = (rgb[rgbIndex] & 0xFF0000) >> 16;
            G = (rgb[rgbIndex] & 0xFF00) >> 8;
            B = (rgb[rgbIndex] & 0xFF);
            // 使用公式把RGB转成YUV
            Y = 0.299 * R + 0.587 * G + 0.114 * B;
            U = -0.147 * R - 0.289 * G + 0.436 * B;
            V = 0.615 * R - 0.515 * G - 0.100 * B;
            // YUV分量赋值给yuv数组
            yuv[yIndex++] = (int8_t)Y;
            if (i % 2 == 0 && j % 2 == 0) {
                yuv[uIndex++] = (int8_t) U;
                yuv[vIndex++] = (int8_t) V;
            }
            rgbIndex++;
        }
        
    } 
}

四、NV21转换为YUV420p

由于NV21是交错存储,4个Y共享一组UV,而且是VUVU这样排列。所以,我们需要把偶数的V分量、奇数的U分量读出来,然后赋值给YUV420p。代码如下:

static void nv21_to_yuv420p(int8_t *dst, int8_t *src, int len) {
    memcpy(dst, src, len); // y
    for (int i = 0; i < len / 4; ++i) {
        *(dst + len + i) = *(src + len + i * 2 + 1);  // u
        *(dst + len * 5 / 4 + i) = *(src + len + i * 2); // v
    }
}

五、YUV旋转

YUV的存储是有旋转角度的存在。在手机拍摄时,按照逆时针来看,横屏向左是0度,竖屏向下是90度,横屏向右是180度,竖屏向上是270度。既然有旋转角度,我们就需要对YUV进行旋转处理,代码如下:

static void yuv420p_rotate90(int8_t *dst, const int8_t *src, int width, int height) {
    int n = 0;
    int wh = width * height;
    int half_width = width / 2;
    int half_height = height / 2;
    // y
    for (int j = 0; j < width; j++) {
        for (int i = height - 1; i >= 0; i--) {
            dst[n++] = src[width * i + j];
        }
    }
    // u
    for (int i = 0; i < half_width; i++) {
        for (int j = 1; j <= half_height; j++) {
            dst[n++] = src[wh + ((half_height - j) * half_width + i)];
        }
    }
    // v
    for (int i = 0; i < half_width; i++) {
        for (int j = 1; j <= half_height; j++) {
            dst[n++] = src[wh + wh / 4 + ((half_height - j) * half_width + i)];
        }
    }
}

static void yuv420p_rotate180(int8_t *dst, const int8_t *src, int width, int height) {
    int n = 0;
    int half_width = width / 2;
    int half_height = height / 2;
    // y
    for (int j = height - 1; j >= 0; j--) {
        for (int i = width; i > 0; i--) {
            dst[n++] = src[width * j + i - 1];
        }
    }
    // u
    int offset = width * height;
    for (int j = half_height - 1; j >= 0; j--) {
        for (int i = half_width; i > 0; i--) {
            dst[n++] = src[offset + half_width * j + i - 1];
        }
    }
    // v
    offset += half_width * half_height;
    for (int j = half_height - 1; j >= 0; j--) {
        for (int i = half_width; i > 0; i--) {
            dst[n++] = src[offset + half_width * j + i - 1];
        }
    }
}

static void yuv420p_rotate270(int8_t *dst, const int8_t *src, int width, int height) {

    for (int j = 0; j < width; j++) {
        for (int i = 1; i <= height; i++) {
            *dst++ = *(src + i * width - j);
        }
    }

    auto *src_u = const_cast<int8_t *>(src + width * height);
    for (int j = 0; j < width / 2; j++) {
        for (int i = 1; i <= height / 2; i++) {
            *dst++ = *(src_u + i * width / 2 - j);
        }
    }

    auto *src_v = const_cast<int8_t *>(src + width * height * 5 / 4);
    for (int j = 0; j < width / 2; j++) {
        for (int i = 1; i <= height / 2; i++) {
            *dst++ = *(src_v + i * width / 2 - j);
        }
    }
}

static void yuv420p_rotate(int8_t *dst, int8_t *src, int width, int height, int degree) {
    switch(degree) {
        case 0:
            memcpy(dst, src, width * height * 3 / 2);
            break;
        case 90:
            yuv420p_rotate90(dst, src, width, height);
            break;
        case 180:
            yuv420p_rotate180(dst, src, width, height);
            break;
        case 270:
            yuv420p_rotate270(dst, src, width, height);
            break;
        default:
            break;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

徐福记456

您的鼓励和肯定是我创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值