激活函数

  1. Sigmoid函数

    特征:

范围[-1,1],历史上很受欢迎。

缺点:

容易产生梯度消失的问题。

输出不是以0为中心。容易产生锯齿现象。

指数计算量大。

  1. tanh函数

    特点:

将数字加到范围[-1,1]

以零为中心(不错)

饱和时仍然会杀死梯度(因为tanh求导后,在饱和时梯度近似为0)

指数计算量大

  1. ReLU(修正线性单元)

    特点:

非常计算效率高,没有指数和正切的计算

收敛速度比Sigmoid / tanh快

不存在梯度消失的问题

在计算过程中,一半神经元在计算过程中为0,计算效率更高,而且自然的形成了"稀疏表示",用少量的神经元可以高效灵活稳健的表示抽象复杂的概念。但是学习率选择不好,导致网络死去。

也不是以0位中心

  1. Leaky ReLU

特征:

不饱和

计算效率高

收敛速度比sigmoid / tanh快!

不会杀"死"网络

 

  1. PReLU

  2. MaxOut

特点:

没有固定的形式

可以生成ReLU和LReLU

线性,不饱和,不杀死网络。

网络结构参数多。

  1. ELU

特点:

具有ReLU的所有好处

更接近于零平均输出

负饱和状态

与Leaky ReLU相比增加了一些鲁棒性,对抗噪声。

需要计算指数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值