调和级数相关极限合集

lim ⁡ n → ∞ 1 n \lim_{n\to\infty}\frac{1}{n} limnn1

lim ⁡ n → ∞ 1 n = 0 \lim_{n\to\infty}\frac{1}{n}=0 nlimn1=0

lim ⁡ n → ∞ 1 n \lim_{n\to\infty}\frac{1}{\sqrt{n}} limnn 1

lim ⁡ n → ∞ 1 n = lim ⁡ n → ∞ 1 n = 0 = 0 \lim_{n\to\infty}\frac{1}{\sqrt{n}}=\sqrt{\lim_{n\to\infty}\frac{1}{n}}=\sqrt{0}=0 nlimn 1=nlimn1 =0 =0

lim ⁡ n → ∞ ( 1 n + 1 ) \lim_{n\to\infty}\left(\frac{1}{n+1}\right) limn(n+11)

lim ⁡ n → ∞ ( 1 n + 1 ) = lim ⁡ n → ∞ ( 1 n 1 + 1 n ) = 0 1 + 0 = 0 \lim_{n\to\infty}\left(\frac{1}{n+1}\right)=\lim_{n\to\infty}\left(\frac{\frac{1}{n}}{1+\frac{1}{n}}\right)=\frac{0}{1+0}=0 nlim(n+11)=nlim(1+n1n1)=1+00=0

lim ⁡ n → ∞ ( n n + 1 ) \lim_{n\to\infty}\left(\frac{n}{n+1}\right) limn(n+1n)

lim ⁡ n → ∞ ( n n + 1 ) = lim ⁡ n → ∞ ( 1 1 + 1 n ) = 1 \lim_{n\to\infty}\left(\frac{n}{n+1}\right)=\lim_{n\to\infty}\left(\frac{1}{1+\frac{1}{n}}\right)=1 nlim(n+1n)=nlim(1+n11)=1

Harmonic series(调和级数) ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1

尝试使用达朗贝尔比值判别法(ratio test or d’Alembert’s ratio test or Cauchy ratio test):
lim ⁡ n → ∞ ( 1 n + 1 1 n ) = lim ⁡ n → ∞ ( n n + 1 ) = 1 \lim_{n\to\infty}\left(\frac{\frac{1}{n+1}}{\frac{1}{n}}\right)=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)=1 nlim(n1n+11)=nlim(n+1n)=1
结论:达朗贝尔比值判别法无法判断Harmonic series是否收敛。

证明方法1:假设Harmonic series收敛于H,即 H = ∑ n = 1 ∞ 1 n H =\sum_{n=1}^\infty\frac{1}{n} H=n=1n1
H ≥ 1 + 1 2 + 1 4 + 1 4 + 1 6 + 1 6 + 1 8 + 1 8 ⋯ H\geq1 + \frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\frac{1}{8}+\frac{1}{8} \cdots H1+21+41+41+61+61+81+81
右侧可以进一步得到:
1 + 1 2 + 1 4 + 1 4 + 1 6 + 1 6 + 1 8 + 1 8 ⋯ = 1 + 1 2 + 1 2 + 1 3 + 1 4 ⋯ = H + 1 2 1 + \frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\frac{1}{8}+\frac{1}{8} \cdots=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\cdots=H+\frac{1}{2} 1+21+41+41+61+61+81+81=1+21+21+31+41=H+21
最终我么们得到:
H ≥ H + 1 2 H \geq H+\frac{1}{2} HH+21
显然结论错误,进一步反推假设错误,因此Harmonic series级数不收敛。

证明方法2:类比于证明方法1,这时我们将右侧写为:
1 + 1 2 + 1 4 + 1 4 + 1 8 + 1 8 + 1 8 + 1 8 ⋯ = 1 + 1 2 + 1 2 + 1 2 + ⋯ = ∞ 1 + \frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} \cdots=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots=\infty 1+21+41+41+81+81+81+81=1+21+21+21+=
非常直观,Harmonic series级数不收敛

lim ⁡ k → ∞ ∑ n = 0 k x n = ∑ n = 0 ∞ x n ∣ x ∣ < 1 \lim_{k\to\infty}\sum_{n=0}^{k}x^n=\sum_{n=0}^{\infty}x^n |x|<1 limkn=0kxn=n=0xnx<1

无穷项级数其实也是一种极限的表达形式。根据等比数列前n项和公式。
∑ n = 0 ∞ x n = lim ⁡ n → ∞ 1 × ( 1 − x n ) 1 − x = 1 1 − x \sum_{n=0}^{\infty}x^n=\lim_{n\to\infty}\frac{1\times (1-x^n)}{1-x}=\frac{1}{1-x} n=0xn=nlim1x1×(1xn)=1x1

∑ n = 0 ∞ 1 2 n \sum_{n=0}^\infty\frac{1}{2^n} n=02n1

直接令上面已经研究过的级数中的 x = 1 2 x=\frac{1}{2} x=21,得:
∑ n = 0 ∞ 1 2 n = 1 1 − 1 2 = 2 \sum_{n=0}^\infty\frac{1}{2^n}=\frac{1}{1-\frac{1}{2}}=2 n=02n1=1211=2

∑ n = 1 ∞ 1 2 n \sum_{n=1}^\infty\frac{1}{2^n} n=12n1

方法一:用上面得到的结果减去第一个值
∑ n = 1 ∞ 1 2 n = 2 − 1 2 0 = 1 \sum_{n=1}^\infty\frac{1}{2^n}=2 - \frac{1}{2^0} = 1 n=12n1=2201=1
方法二:将原有的形式做一个小的变化
1 2 ∑ n = 1 ∞ 1 2 n − 1 = 1 2 ∑ k = 0 ∞ 1 2 k = 1 2 × 2 = 1 \frac{1}{2}\sum_{n=1}^\infty\frac{1}{2^{n-1}}=\frac{1}{2}\sum_{k=0}^\infty\frac{1}{2^{k}}=\frac{1}{2}\times 2= 1 21n=12n11=21k=02k1=21×2=1

∑ n = 1 ∞ n 2 n \sum_{n=1}^\infty\frac{n}{2^n} n=12nn

方法一:根据之前我们得到的关系 ∑ n = 0 ∞ x n = 1 1 − x \sum_{n=0}^{\infty}x^n=\frac{1}{1-x} n=0xn=1x1,对这个等式两侧同时微分:
∑ n = 1 ∞ n x n − 1 = 1 ( 1 − x ) 2 \sum_{n=1}^{\infty}nx^{n-1}=\frac{1}{\left(1-x\right)^2} n=1nxn1=(1x)21
x = 1 2 x=\frac{1}{2} x=21,得:
∑ n = 1 ∞ n 1 2 n − 1 = 1 ( 1 − 1 2 ) 2 = 4 \sum_{n=1}^{\infty}n\frac{1}{2^{n-1}}=\frac{1}{\left(1-\frac{1}{2}\right)^2}=4 n=1n2n11=(121)21=4
1 2 ∑ n = 1 ∞ n 1 2 n − 1 = ∑ n = 1 ∞ n 2 n = 2 \frac{1}{2}\sum_{n=1}^{\infty}n\frac{1}{2^{n-1}}=\sum_{n=1}^\infty\frac{n}{2^n}=2 21n=1n2n11=n=12nn=2
方法二:后面补充
方法三:后面补充

∑ n = 1 ∞ 1 n ( n + 1 ) \sum_{n=1}^\infty\frac{1}{n\left(n+1\right)} n=1n(n+1)1

1 n ( n + 1 ) = 1 n − 1 ( n + 1 ) \frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{\left(n+1\right)} n(n+1)1=n1(n+1)1
∑ n = 1 ∞ 1 n ( n + 1 ) = lim ⁡ n → ∞ [ ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) ] = lim ⁡ n → ∞ [ 1 − 1 n + 1 ] = 1 \sum_{n=1}^\infty\frac{1}{n\left(n+1\right)}=\lim_{n\to \infty}\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}- \frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)\right]=\lim_{n\to \infty}\left[1-\frac{1}{n+1}\right]=1 n=1n(n+1)1=nlim[(121)+(2131)++(n1n+11)]=nlim[1n+11]=1
之前我们已经证明过了:
lim ⁡ n → ∞ ( 1 n + 1 ) = 0 \lim_{n\to\infty}\left(\frac{1}{n+1}\right)=0 nlim(n+11)=0

∑ n = 1 ∞ n ! ( n + 1 ) ! \sum_{n=1}^\infty\frac{n!}{\left(n+1\right)!} n=1(n+1)!n!

n ! ( n + 1 ) ! = 1 n ! − 1 ( n + 1 ) ! \frac{n!}{\left(n+1\right)!}=\frac{1}{n!}-\frac{1}{\left(n+1\right)!} (n+1)!n!=n!1(n+1)!1
∑ n = 1 ∞ n ! ( n + 1 ) ! = ∑ n = 1 ∞ ( 1 n ! − 1 ( n + 1 ) ! ) = 1 1 ! − lim ⁡ n → ∞ 1 ( n + 1 ) ! = 1 − 0 = 1 \sum_{n=1}^\infty\frac{n!}{\left(n+1\right)!}=\sum_{n=1}^\infty\left(\frac{1}{n!}-\frac{1}{\left(n+1\right)!}\right)=\frac{1}{1!}-\lim_{n\to\infty}\frac{1}{\left(n+1\right)!}=1-0=1 n=1(n+1)!n!=n=1(n!1(n+1)!1)=1!1nlim(n+1)!1=10=1

lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 + k \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\sqrt{n^2+k}} limnk=1nn2+k 1

根据夹挤定理求解:
确定下限:
∑ k = 1 n 1 n 2 + k = 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n > 1 n 2 + n + 1 n 2 + n + ⋯ + 1 n 2 + n = n n 2 + n \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}>\frac{1}{\sqrt{n^2+n}}+\frac{1}{\sqrt{n^2+n}}+\cdots+\frac{1}{\sqrt{n^2+n}}=\frac{n}{\sqrt{n^2+n}} k=1nn2+k 1=n2+1 1+n2+2 1++n2+n 1>n2+n 1+n2+n 1++n2+n 1=n2+n n
确定上限:
∑ k = 1 n 1 n 2 + k = 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n < 1 n 2 + 1 n 2 + ⋯ + 1 n 2 = n n 2 \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\cdots+\frac{1}{\sqrt{n^2+n}}<\frac{1}{\sqrt{n^2}}+\frac{1}{\sqrt{n^2}}+\cdots+\frac{1}{\sqrt{n^2}}=\frac{n}{\sqrt{n^2}} k=1nn2+k 1=n2+1 1+n2+2 1++n2+n 1<n2 1+n2 1++n2 1=n2 n
即:
∑ k = 1 n 1 n 2 + k < ∑ k = 1 n 1 n 2 = n n 2 \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}<\sum_{k=1}^n\frac{1}{\sqrt{n^2}}=\frac{n}{\sqrt{n^2}} k=1nn2+k 1<k=1nn2 1=n2 n
结合起来得到:
n n 2 + n < ∑ k = 1 n 1 n 2 + k < ∑ k = 1 n 1 n 2 \frac{n}{\sqrt{n^2+n}}<\sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}<\sum_{k=1}^n\frac{1}{\sqrt{n^2}} n2+n n<k=1nn2+k 1<k=1nn2 1
进一步加入n的趋向:
下限:
lim ⁡ n → ∞ n n 2 + n = lim ⁡ n → ∞ 1 1 + 1 n = 1 1 = 1 \lim_{n\to\infty}\frac{n}{\sqrt{n^2+n}}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\frac{1}{n}}}=\frac{1}{1}=1 nlimn2+n n=nlim1+n1 1=11=1
上限:
lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 = lim ⁡ n → ∞ n n 2 = lim ⁡ n → ∞ 1 1 = 1 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\sqrt{n^2}}=\lim_{n\to\infty}\frac{n}{\sqrt{n^2}}=\lim_{n\to\infty}\frac{1}{\sqrt{1}}=1 nlimk=1nn2 1=nlimn2 n=nlim1 1=1
将二者结合起来:
1 < lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 + k < 1 1<\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}<1 1<nlimk=1nn2+k 1<1
最终可以得到:
lim ⁡ n → ∞ ∑ k = 1 n 1 n 2 + k = 1 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\sqrt{n^2+k}}=1 nlimk=1nn2+k 1=1
最近一次更新时间 2021.09.18。欢迎收藏,以后不定时更新。

码字不易,如果大家觉得有用,请高抬贵手给一个赞让我上推荐让更多的人看到吧~

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值