pandas基础操作

本文介绍了Pandas在Excel数据处理中的基本操作,包括创建一维和二维带标签数组,通过标签或索引获取单个数据值,以及如何提取DataFrame的子集合、单行和单列。示例详细展示了iloc和iat方法用于二维数组数据提取,以及loc方法用于获取单行数据。此外,还展示了如何选取DataFrame的特定行和列。
摘要由CSDN通过智能技术生成

说到excel表格中的数据处理,就不得不提到pandas模块。这里简单分享一下pandas模块的基础操作。这里表格文件的数据类型以xlsxcsv来举例。

举例1:创建一维带标签的数组

df = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])
print(df)
"""
reuslt:
a    3
b   -5
c    7
d    4
dtype: int64
"""

可以看到一维的数据是以列的形式进行排列的

举例2:创建二维带标签的数组

data = {"Country": ["Belgium", "india", "Brazil"], "Capital": ["Brussels", "New Delhi", "Brasilia"], "Population": [
     "11190846", "1303171035", "207847528"]}
df = pd.DataFrame(data, columns=["Country", "Capital", "Population"])
print(df)
"""
reuslt:
   Country    Capital  Population
0  Belgium   Brussels    11190846
1    india  New Delhi  1303171035
2   Brazil   Brasilia   207847528
"""

可以看到这里我们创建了一个二维数据,其中列标签沿着横向排列。索引值沿着纵向排列。

举例3:对于一维数组获取单个数据值

# 通过标签获得单个值
df = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])
print(df['a'])
"""
reuslt:
3
"""
# 通过索引获得单个值
print(df[0])
"""
reuslt:
3
"""

我们通过标签或者索引均成功地获得了单个数据值

举例4:对于二维数组获得单个数据

data = {'Country': ['Belgium', 'india', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasilia'], 'Population': [
    '11190846', '1303171035', '207847528']}
df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population'])
print(df.iloc[0, 0])
print(df.iat[0, 0])
"""
result:
Belgium
Belgium
"""

可以看到,通过DataFrame.iloc()DataFrame.iat()方法我们均成功地获取到了二维数组中的单个数据值。

举例5:获取DataFrame子集合的值

data = {'Country': ['Belgium', 'india', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasilia'], 'Population': [
    '11190846', '1303171035', '207847528']}
df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population'])
print(df[1:])
"""
result:
  Country    Capital  Population
1   india  New Delhi  1303171035
2  Brazil   Brasilia   207847528
"""

可以看到, 我们成功获取到了索引值大于1的原始DataFrame中的所有值。

举例5:通过标签获得单行的值

data = {'Country': ['Belgium', 'india', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasilia'], 'Population': [
    '11190846', '1303171035', '207847528']}
df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population'])
print(df.loc[[0]])
"""
result:
   Country   Capital Population
0  Belgium  Brussels   11190846
"""

可以看到,我们成功获取到了单行的值。

举例6:通过标签获得单列的值

data = {'Country': ['Belgium', 'india', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasilia'], 'Population': [
    '11190846', '1303171035', '207847528']}
df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population'])
print(df[['Country']])
"""
result:
   Country
0  Belgium
1    india
2   Brazil
"""

可以看到,我们成功获取到了单列的值。

关于提取数据时参数为什么要带中括号的原因可以看这篇pandas中提取单行单列数据时的参数问题(超链接点击跳转)。

码字不易,如果大家觉得有用,请高抬贵手给一个赞让我上推荐让更多的人看到吧~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值