Pandas ------ 向 Excel 文件中写入含有合并表头的数据

本文介绍了如何在Python中使用Pandas库向Excel文件写入数据,特别关注了如何处理带有多级合并表头的情况,即通过在设置多索引或多列时重复书写需要合并的表头部分来实现。
摘要由CSDN通过智能技术生成

Pandas ------ 向 Excel 文件中写入含有合并表头的数据

推荐阅读

Pandas ------ 向 Excel 文件中写入含有 multi-index 和 Multi-column 表头的数据

引言

这里给大家介绍一下如何向 Excel 中写入带有合并表头的数据。

正文

import pandas as pd


df1 = pd.DataFrame([['a', 'b'], ['c', 'd']],
                   index=['row 1', 'row 2'],
                   columns=[['layer1', 'layer1'],
                            ['col 1', 'col 2']])
df1.to_excel("output.xlsx")

被写入文件中的数据如下:
在这里插入图片描述
可以看到,此时,纵向表头的第一行已经被合并了,且它是由两列合并得到。对比代码,我们可以看出,如果想要得到带有合并表头的数据,我们只需要在设置多 index 或者多 columns 数据时,对于需要合并表头的数据重复书写,重复书写的次数与其他行表头数据总数一致,比如这里,我们在代码中的二维列表 columns 中将 layer1 字符串重复书写了两次。

至此,我们介绍了如何向 Excel 文件中写入含有合并表头的数据。

如果大家觉得有用,就请点个赞吧~

Pandas是一个强大的数据处理库,在Python常用于数据分析。如果你想合并文件的多个Excel文件,并按照表头进行合并,你可以使用pandas的`read_excel`函数读取每个文件,然后使用`concat`或`append`函数将它们连接在一起。 首先,安装pandas(如果你还没有安装): ```bash pip install pandas ``` 然后,可以按照以下步骤操作: 1. 导入所需的模块: ```python import os import pandas as pd ``` 2. 定义文件夹路径和文件扩展名: ```python folder_path = 'your_folder_path' # 替换为你需要合并文件夹路径 file_extension = '*.xlsx' # Excel文件扩展名 ``` 3. 使用递归获取所有文件: ```python files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(file_extension)] ``` 4. 遍历文件列表,逐个读取并合并: ```python dfs = [] for file in files: df = pd.read_excel(file) dfs.append(df) # 如果你想按照表头合并,可以直接使用pd.concat merged_df = pd.concat(dfs, ignore_index=True) # ignore_index确保行索引从0开始 # 或者如果表头一致,只在第一次读取时设置为列名 # merged_df = dfs[0] # for i in range(1, len(dfs)): # merged_df = merged_df.merge(dfs[i], on=merged_df.columns.tolist(), how='outer') # 如果不需要表头合并,append会保留各自文件数据结构: # merged_df = dfs[0] # for df in dfs[1:]: # merged_df = merged_df.append(df, ignore_index=True) ``` 最后,保存结果到一个新的Excel文件: ```python merged_df.to_excel('output.xlsx', index=False) # 将合并后的DataFrame写入新的Excel文件 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值