n个狐狸围桌吃饭 每个狐狸身上自带一个值fi 现在要使得相邻的两个狐狸Fi Fi+1的和为质数(F1与Fn相邻)
问可以把这些狐狸安排到几个桌子 如果可以给出每个桌子上狐狸安排的顺序
因为每个每个Fi的值都是大于2的 所以两个值相加要为质数 这个质数肯定是个奇数 所以要满足奇数+偶数
所以把初始的n个值分为两部分 一个部分为奇数部分 一个为偶数部分
且每个奇数与两个偶数相邻 每个偶数与两个奇数相邻
虚拟一个源点 汇点 源点与偶数之间建边 权值为2 奇数与汇点之间建边 权值为2
满足相加为质数的偶数与奇数之间建边 权值为1 跑最大流 看答案是否为n
然后需要去存储答案 如果奇数与偶数之间有流 则说明这条边是满足情况的 从一个点出发找出一条路径
即是一个桌子的情况
注意这道题建的是有向边
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <string>
#include <vector>
#include <queue>
#define MEM(a,x) memset(a,x,sizeof a)
#define eps 1e-8
#define MOD 10009
#define MAXN 410
#define MAXM 100010
#define INF 99999999
#define ll __int64
#define bug cout<<"here"<<endl
#define fread freopen("ceshi.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)
using namespace std;
int Read()
{
char c = getchar();
while (c < '0' || c > '9') c = getchar();
int x = 0;
while (c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x;
}
void Print(int a)
{
if(a>9)
Print(a/10);
putchar(a%10+'0');
}
struct Edge
{
int from,to,cap,flow;
bool operator <(const Edge e) const
{
if(e.from!=from) return from<e.from;
else return to<e.to;
}
Edge() {}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow) {}
};
struct Dinic
{
vector<Edge> edges;
vector<int> G[MAXN];
bool vis[MAXN];//BFS使用
int d[MAXN]; //从起点到i的距离
int cur[MAXN]; //当前弧下标
int n,m,s,t,maxflow; //节点数 边数(包括反向弧) 源点编号和弧点编号
void init(int n)
{
this->n=n;
for(int i=0;i<=n;i++)
G[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs()
{
MEM(vis,0);
MEM(d,-1);
queue<int> q;
q.push(s);
d[s]=maxflow=0;
vis[s]=1;
while(!q.empty())
{
int u=q.front(); q.pop();
int sz=G[u].size();
for(int i=0;i<sz;i++)
{
Edge e=edges[G[u][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
d[e.to]=d[u]+1;
vis[e.to]=1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int u,int a)
{
if(u==t||a==0) return a;
int sz=G[u].size();
int flow=0,f;
for(int &i=cur[u];i<sz;i++)
{
Edge &e=edges[G[u][i]];
if(d[u]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[u][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
this->s=s; this->t=t;
int flow=0;
while(bfs())
{
MEM(cur,0);
flow+=dfs(s,INF);
}
return flow;
}
}Dic;
bool notprime[50010];//值为0表示素数 为1表示非素数
void isprime()
{
MEM(notprime,0);
notprime[0]=notprime[1]=1;
for(int i=2;i<50000;i++)
{
if(!notprime[i])
{
if(i>50000/i) continue;
for(int j=i*i;j<50000;j+=i)
notprime[j]=1;
}
}
}
bool isPrime(int n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0) return 0;
return 1;
}
int vis[MAXN];
int a[MAXN];
vector<int> g[MAXN];
int main()
{
// fread;
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
Dic.init(n+1);
int s=n,t=n+1;
for(int i=0;i<n;i++)
{
if(a[i]%2==0)
Dic.addedge(s,i,2);
else Dic.addedge(i,t,2);
}
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[i]%2==0&&a[j]%2!=0&&isPrime(a[i]+a[j]))
Dic.addedge(i,j,1);
}
}
int res=Dic.Maxflow(s,t);
if(res!=n)
{
puts("Impossible");
return 0;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<Dic.G[i].size();j++)
{
int index=Dic.G[i][j];
if(Dic.edges[index].flow>0&&Dic.edges[index].to<n)
{
g[i].push_back(Dic.edges[index].to);
g[Dic.edges[index].to].push_back(i);
}
}
}
vector< vector<int> > path;
for(int i=0;i<n;i++)
{
if(vis[i])
continue;
vector<int> current;
int j=i;
while(1)
{
current.push_back(j);
vis[j]=1;
int nj=-1;
for(int k=0;k<g[j].size();k++)
{
if(!vis[g[j][k]])
{
nj=g[j][k];
break;
}
}
if(nj==-1)
{
break;
}
j=nj;
}
path.push_back(current);
}
printf("%d\n",path.size());
for(int i=0;i<path.size();i++)
{
printf("%d",path[i].size());
for(int j=0;j<path[i].size();j++)
printf(" %d",path[i][j]+1);
printf("\n");
}
return 0;
}
//int main()
//{
fread;
// isprime();
// int n;
// scanf("%d",&n);
while(scanf("%d",&n)!=EOF)
{
// for(int i=1;i<=n;i++)
// scanf("%d",&a[i]);
int n1=0,n2=0;
for(int i=1;i<=n;i++)
{
if(a[i]&1)
{
a1[++n1]=a[i];
num1[n1]=i;
}
else
{
a2[++n2]=a[i];
num2[n2]=i;
}
}
if(n1!=n2)
{
puts("Impossible");
continue;
}
int s=0,t=n+1;
Dic.init(t);
for(int i=1;i<=n1;i++)
Dic.addedge(s,i,2);
for(int i=1;i<=n2;i++)
Dic.addedge(i+n1,t,2);
// cout<<"n "<<n<<" "<<n1+n2<<endl;
for(int i=1;i<=n1;i++)
for(int j=1;j<=n2;j++)
{
if(!notprime[a1[i]+a2[j]])
Dic.addedge(i,j+n1,1);
}
int mxflow=Dic.Maxflow(s,t);
if(mxflow!=n)
{
puts("Impossible");
continue;
}
// int s=0,t=n+1;
// Dic.init(t);
// for(int i=1;i<=n;i++)
// {
// if(a[i]%2==0)
// Dic.addedge(s,i,2);
// else Dic.addedge(i,t,2);
// }
// for(int i=1;i<=n;i++)
// for(int j=1;j<=n;j++)
// {
// if(a[i]%2==0&&a[j]%2!=0&&!notprime[a[i]+a[j]])
// Dic.addedge(i,j,1);
// }
// int res=Dic.Maxflow(s,t);
// if(res!=n)
// {
// puts("Impossible");
// return 0;
// }
for(int i=0;i<=t;i++)
g[i].clear();
// for(int i=1;i<=n;i++)
// {
// for(int j=0;j<Dic.G[i].size();j++)
// {
// int index=Dic.G[i][j];
// if(Dic.edges[index].flow>0&&Dic.edges[index].to<=n)
// {
// g[i].push_back(Dic.edges[index].to);
// g[Dic.edges[index].to].push_back(i);
// }
// }
// }
// vector< vector<int> > path;
// MEM(vis,0);
// for(int i=1;i<=n;i++)
// {
// if(vis[i]) continue;
// vector<int> current;
// int j=i;
// while(1)
// {
// current.push_back(j);
// vis[j]=1;
// int nj=-1;
// for(int k=0;k<g[j].size();k++)
// {
// if(!vis[g[j][k]])
// {
// nj=g[j][k];
// break;
// }
// }
// if(nj==-1)
// {
// break;
// }
// j=nj;
// }
// path.push_back(current);
// }
// printf("%d\n",path.size());
// for(int i=0;i<path.size();i++)
// {
// printf("%d",path[i].size());
// for(int j=0;j<path[i].size();j++)
// printf(" %d",path[i][j]);
// puts("");
// }
int tot=0;
for(int i=1;i<=n1;i++)
{
int sz=Dic.G[i].size();
for(int j=0;j<sz;j++)
{
int x=Dic.G[i][j];
if(Dic.edges[x].flow>0)
{
ans[++tot][1]=num1[i];
ans[tot][2]=num2[Dic.edges[x].to-n1];
}
}
}
int m=0;
MEM(vis,0);
MEM(st,0);
for(int i=1;i<=tot;i++)
{
if(!vis[i])
{
vis[i]=1;
st[++m][1]=ans[i][1];
st[m][2]=ans[i][2];
int st_size=2;
while(st[m][1]!=st[m][st_size])
{
for(int i=1;i<=tot;i++)
{
if(!vis[i])
{
if(ans[i][1]==st[m][st_size])
{
st[m][++st_size]=ans[i][2];
vis[i]=1;
break;
}
if(ans[i][2]==st[m][st_size])
{
st[m][++st_size]=ans[i][1];
vis[i]=1;
break;
}
}
}
}
st[m][0]=st_size-1;
}
}
printf("%d\n",m);
for(int i=1;i<=m;i++)
{
// cout<<"i "<<i<<endl;
printf("%d",st[i][0]);
for(int j=1;j<=st[i][0];j++)
printf(" %d",st[i][j]);
puts("");
}
}
//
// return 0;
//}