矩阵论中的常见概念

学校时候学的线性代数都忘光了,总结一下常用的东西

《1》矩阵的行列式

  1. \det(I_{n})=1 where In is the n × n identity matrix.
  2. \det(A^{\rm {T}})=\det(A).
  3. \det(A^{-1})={\frac {1}{\det(A)}}=\det(A)^{-1}.
  4. For square matrices A and B of equal size,

                            \det(AB)=\det(A)\det(B).

  1. \det(cA)=c^{n}\det(A) for an n × n matrix.
  2. If A is a triangular matrix, i.e. ai,j = 0 whenever i > j or, alternatively, whenever i < j, then its determinant equals the product of the diagonal entries:

                     \det(A)=a_{1,1}a_{2,2}\cdots a_{n,n}=\prod _{i=1}^{n}a_{i,i}.

 

Let A be an arbitrary n×n matrix of complex numbers with eigenvalues \lambda _{1}\lambda _{2}, … \lambda _{n}

                                                         \operatorname {det} (A)=\prod _{i=1}^{n}\lambda _{i}=\lambda _{1}\lambda _{2}\cdots \lambda _{n}.

The trace tr(A) is by definition the sum of the diagonal entries of A and also equals the sum of the eigenvalues.

 

《2》矩阵的逆

an n-by-n square matrix A is called invertible (also nonsingular or nondegenerate) if there exists an n-by-n square matrix B such that

\mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n}\(定义)

矩阵可逆,又叫矩阵非奇异; 不可逆,又叫矩阵奇异。

A square matrix is singular if and only if  det A =0.

Non-square matrices (m-by-n matrices for which m ≠ n) do not have an inverse. However, in some cases such a matrix may have a left inverse (左逆)or right inverse(右逆). If A is m-by-n and the rank of A is equal to n, then A has a left inverse: an n-by-m matrix B such that BA = In. If A has rank m, then it has a right inverse: an n-by-m matrix B such that AB = Im.

 

《2.1》逆的性质

det A ≠ 0.

rank A = n.

equation Ax = b has exactly one solution for each b.

The columns of A are linearly independent.

The transpose AT is an invertible matrix .

 

两个线性无关的特征向量:两个特征向量不成倍数关系,或者说特征向量对应的特征值不相等。

可对角化:An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors.  当矩阵可对角化的时候,才可以对矩阵进行特征值分解 (Eigen decomposition)

对于不可对角化的方阵,可以进行 Jordan 分解,there is an invertible matrix P such that A = PJP−1 .  Jordan 分解是特征值分解的一般化形式。

 

《2.2》逆的求解

1. LU decomposition which generates upper and lower triangular matrices which are easier to invert

2. Eigen decomposition:If matrix A can be eigendecomposed 且if none of its eigenvalues are zero,  then A is invertible and its inverse is given by

\mathbf {A} ^{-1}=\mathbf {Q} \mathbf {\Lambda } ^{-1}\mathbf {Q} ^{-1}

where Q is the square (N×N) matrix whose ith column is the eigenvector q_{i} of A and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e.\Lambda _{ii}=\lambda _{i}. Furthermore, because Λ is a diagonal matrix, its inverse is easy to calculate:

\left[\Lambda ^{-1}\right]_{ii}={\frac {1}{\lambda _{i}}}

3.Cholesky decomposition

If matrix A is positive definite, then its inverse can be obtained as

\mathbf {A} ^{-1}=(\mathbf {L} ^{*})^{-1}\mathbf {L} ^{-1},

where L is the lower triangular Cholesky decomposition of A, and L* denotes the conjugate transpose(共轭转置)of L.

 

《3》分块矩阵的逆

If a matrix is partitioned into four blocks, it can be inverted blockwise as follows:

{\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} (\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} )^{-1}\mathbf {CA} ^{-1}&-\mathbf {A} ^{-1}\mathbf {B} (\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} )^{-1}\\-(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} )^{-1}\mathbf {CA} ^{-1}&(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} )^{-1}\end{bmatrix}},

\,

where ABC and D have arbitrary size. (A and D must be square, so that they can be inverted. Furthermore, A and DCA−1B must be nonsingular.[6])

Equivalently,

{\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} )^{-1}&-(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} )^{-1}\mathbf {BD} ^{-1}\\-\mathbf {D} ^{-1}\mathbf {C} (\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} )^{-1}&\quad \mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} (\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} )^{-1}\mathbf {BD} ^{-1}\end{bmatrix}}.

 

《4》正交矩阵 Orthogonal matrix

In linear algebra, an orthogonal matrix or real orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors), i.e.

          Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,

性质:

Q^{\mathrm {T} }=Q^{-1},\,

各行是单位向量且两两正交;

各列是单位向量且两两正交;

行列式为1,或者 -1;

 

《5》酉矩阵:Unitary Matrix,正交矩阵复数域的推广

In mathematics, a complex square matrix U is unitary if its conjugate transpose U∗ is also its inverse – that is, if

U^{*}U=UU^{*}=I,

  • |det(U)| = 1.

 

《6》共轭转置矩阵 Conjugate transpose

In mathematics, the conjugate transpose or Hermitian transpose of an m-by-n matrix A with complex entries is the n-by-m matrix A∗ obtained from A by taking the transpose and then taking the complex conjugate of each entry (i.e., negating their imaginary parts but not their real parts). The conjugate transpose is formally defined by:

                         {\boldsymbol  {A}}^{*}=(\overline {​{\boldsymbol  {A}}})^{​{\mathrm  {T}}}=\overline {​{\boldsymbol  {A}}^{​{\mathrm  {T}}}}

The complex conjugate of a + bi, where a and b are reals, is a - bi

{\displaystyle {\boldsymbol {A}}^{*}} or {\displaystyle {\boldsymbol {A}}^{\mathrm {H} }}, commonly used in linear algebra

 

《7》艾尔米特矩阵

               {\displaystyle {\boldsymbol {A}}^{*}}=A,即A的共轭转置矩阵等于它本身

显然埃尔米特矩阵是实对称阵的推广。

 

《8》正定矩阵Positive-definite matrix,半正定矩阵 positive semi-definite:

一个n× n的艾尔米特矩阵M是正定的,当且仅当对于每个非零的复向量z,都有z*Mz > 0,则称M为正定矩阵,其中z* 表示z的共轭转置矩阵。当z*Mz > 0弱化为z*Mz≥0时,称M是半正定矩阵

判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。

判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。

判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。

性质:

1.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的楚列斯基(Cholesky)分解。

2.若A为n阶正定矩阵,则A为n阶可逆矩阵。

半正定矩阵的充分必要条件是:A的特征值非负,即全大于等于0.

 

《9》二次型

More generally, any quadratic function from Rn to R can be written as xTMx + xTb + c where M is a symmetric n × n matrix, b is a real n-vector, and c a real constant. This quadratic function is strictly convex when M is positive definite, and hence has a unique finite global minimum, if and only if M is positive definite.For this reason, positive definite matrices play an important role in optimization problems.

 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值