ML基础-决策树-4-构造注解树

这篇博客详细介绍了如何构造决策树的注解部分,包括绘制树节点、准备构造注解树的数据结构,以及使用matplotlib进行参数设置。内容来源于https://www.cnblogs.com/zhizhan/p/5615947.html,主要讨论了决策树在机器学习中的应用和可视化技巧。
摘要由CSDN通过智能技术生成

绘制树节点

import matplotlib.pyplot as plt

# ❶ (以下三行)定义文本框和箭头格式
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")


# ❷ (以下两行)绘制带箭头的注解
# xycoords为目标点的坐标系统,axes fraction指按照坐标轴相对位置
# xytext在坐标为xytext处添加坐标为x, y的点的注释
# textcoords为目标点的坐标系统, axes fraction指按照坐标轴相对位置
# bbox应该是(矩形的)文本框属性,alpha是相对不透明度,facecolor应该是背景颜色
# arrowprops的属性:shrink, facecolor, width(箭头宽度),headwidth(箭头宽度)
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)

def createPlot():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotNode('决策节点', (0.5, 0.1), (0.1</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值