4.1_交叉熵代价函数

参数的调整目标:离目标越远,参数变化的梯度应该越大

  • 二次代价函数(quadratic cost)

c = 1 2 n [ ∑ ( y − a ) 2 ] c = \frac {1}{2n}[\sum (y-a)^2] c=2n1[(ya)2]
∂ c ∂ w \frac{\partial c}{\partial w} wc ∂ c ∂ b \frac{\partial c}{\partial b} bc 都与 σ ( z ) \sigma (z) σ(z)的导数正相关

  • 交叉熵代价函数(cross-entropy)

c = − 1 n ∑ x [ y l n a + ( 1 − y ) l n ( 1 − a ) ] c = -\frac{1}{n}\sum_x[ y ln a + (1-y) ln (1-a)] c=n1x[ylna+(1y)ln(1a)]
其中,a是输出,x是样本,y是实际值
a = σ ( z ) , z = ∑ w j ∗ x j + b , σ ′ ( z ) = σ ( z ) ( 1 − σ ( z ) ) a = \sigma(z) , z =\sum w_j*x_j +b, \sigma'(z) = \sigma(z)(1-\sigma(z)) a=σ(z),z=wjxj+b,σ(z)=σ(z)(1σ(z))
则:
∂ c ∂ w j = − 1 n ∑ x ( y σ ( z ) − 1 − y 1 − σ ( z ) ) ∂ σ ∂ w j = 1 n ∑ x x j ( σ ( z ) − y ) \frac{\partial c}{\partial w_j}=-\frac{1}{n}\sum _x(\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)})\frac{\partial \sigma}{\partial w_j}=\frac {1}{n}\sum_x x_j(\sigma(z)-y) wjc=n1x(σ(z)y1σ(z)1y)wjσ=n1xxj(σ(z)y)
∂ c ∂ b = 1 n ∑ x ( σ ( z ) − y ) \frac{\partial c}{\partial b}=\frac{1}{n}\sum_x (\sigma(z)-y) bc=n1x(σ(z)y)
也就是说: ∂ c ∂ w j \frac{\partial c}{\partial w_j} wjc ∂ c ∂ b \frac{\partial c}{\partial b} bc只和 σ ( z ) − y \sigma(z)-y σ(z)y有关,即误差越大,参数调整越快,符合预期的目标。

  • 对数似然代价函数(log-likelihood cost)

输出层神经元的激活函数是sigmoid函数,采用交叉熵代价函数

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=,logits=))

输出层神经元的激活函数是softmax函数,采用对数释然代价函数

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=,logits=))

结论:

若输出神经元的激活函数是线性的,使用二次代价函数;
若输出神经元的激活函数是s型的,适合用交叉熵代价函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值