深度学习系列-交叉熵代价函数

这篇博客介绍了交叉熵代价函数在深度学习中的应用,包括熵和交叉熵的概念,以及相对熵(KL散度)。文章指出交叉熵常作为损失函数,衡量真实标记分布与模型预测分布的相似性,且在梯度下降中优于均方误差函数。
摘要由CSDN通过智能技术生成

交叉熵代价函数

基本完成了些许期末考试,特意来补一些softmax,因为涉及到损失函数。损失函数一般分为mse,与交叉熵,对于softmax来说损失函数一般采用交叉熵。今天补一下交叉熵的概念。

  1. 交叉熵
    熵的概念:熵的本质是香农信息量 log1p 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为 H(p)=p(i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值