交叉熵代价函数
基本完成了些许期末考试,特意来补一些softmax
,因为涉及到损失函数。损失函数一般分为mse
,与交叉熵,对于softmax
来说损失函数一般采用交叉熵。今天补一下交叉熵的概念。
交叉熵
熵的概念:熵的本质是香农信息量 log1p 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为 H(p)=p(i
基本完成了些许期末考试,特意来补一些softmax
,因为涉及到损失函数。损失函数一般分为mse
,与交叉熵,对于softmax
来说损失函数一般采用交叉熵。今天补一下交叉熵的概念。
交叉熵
熵的概念:熵的本质是香农信息量 log1p 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布。按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为 H(p)=p(i