人工智能从入门到精通(4)

第四天

损失函数的学习

深度学习与深层神经网络

深度学习两个重要特性:多层和非线性

线性模型的局限性

线性模型的输出为输入的加权和,解决问题的能力是有限的

激活函数实现去线性化

如果一个神经元的输出通过一个非线性函数,那么整个神经网络的模型也就不再是线性的了。

多层网络解决异或问题

感知机模型无法解决异或问题,唯有加入隐藏层后,才能很好的解决异或问题,因为深层网络有更好的组合特征提取的功能。

经典损失函数

分类问题和回归问题是监督学习的两大种类
交叉熵刻画了两个概率分布之间的距离
softmax回归使神经网络前向传播得到的结果变成概率分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值