卷积神经网络:
- 输入层:图片一般是三维矩阵(黑白深度为1,RGB图片为3)
- 卷积层:矩阵会变深
- 池化层:不改变深度,缩小矩阵大小
- 全连接层
softmax层
全链接层和使用卷积层参数的对比
一张图片是32*32*3大小,输入层就有3072个节点,如果第一层全连接层任然是500个节点,那么这一层全连接神经网络就有3072*500+500约等于150万个参数。
使用卷积
输入层为32*32*3 ,假设第一层卷积尺寸为5*5,深度为16的过滤器,那么这个卷积层的参数个数为5*5*3*16+16=1216个
池化层
作用:
- 缩小矩阵尺寸
- 防止过拟合