人工智能从入门到精通(14)

卷积神经网络:

  1. 输入层:图片一般是三维矩阵(黑白深度为1,RGB图片为3)
  2. 卷积层:矩阵会变深
  3. 池化层:不改变深度,缩小矩阵大小
  4. 全连接层
  5. softmax层

    全链接层和使用卷积层参数的对比

一张图片是32*32*3大小,输入层就有3072个节点,如果第一层全连接层任然是500个节点,那么这一层全连接神经网络就有3072*500+500约等于150万个参数。

使用卷积
输入层为32*32*3 ,假设第一层卷积尺寸为5*5,深度为16的过滤器,那么这个卷积层的参数个数为5*5*3*16+16=1216个

池化层

作用:

  1. 缩小矩阵尺寸
  2. 防止过拟合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值