【数学与算法】曲线上各点的曲率kappa和倾角theta

曲线上每个点的两个属性,倾角 θ \color{red}\theta θ 和曲率 k a p p a \color{red}kappa kappa

1.倾角:

曲线上有两点 A 、 B \color{red}A、B AB很近, A \color{red}A A点的切线与前进方向 x \color{red}x x 的角度 θ \color{red}\theta θ,就是 A \color{red}A A点的倾角 。

但是,在实际工程中,不容易直接求出曲线每个点的切线和前进方向 x \color{red}x x 的角度,但是由于曲线上的两点 A 、 B \color{red}A、B AB很近,可以近似用下图的 α \color{red}\alpha α 来代替 A \color{red}A A点的倾角 θ \color{red}\theta θ

就是用两个点的弦来代替该点的切线,这样就可以使用 A 、 B \color{red}A、B AB 两点的坐标【(x,y)都已知】来求解下图的 α \color{red}\alpha α,该 α \color{red}\alpha α 就是 A \color{red}A A点的近似倾角。

t a n α = Δ y Δ x \color{red}tan{\alpha}=\frac{\Delta{y}}{\Delta{x}} tanα=ΔxΔy,即曲线相邻两个点的水平方向距离除以竖直方向距离,就是 α \color{red}\alpha α的正切值。

因为使用 α \color{red}\alpha α 来近似 θ \color{red}\theta θ ,所以代码中就使用 α \color{red}\alpha α 的值为倾角 θ \color{red}\theta θ 的值:

t a n θ = Δ y Δ x \color{red}tan{\theta}=\frac{\Delta{y}}{\Delta{x}} tanθ=ΔxΔy
在这里插入图片描述

2.曲率

曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。

曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。

在这里插入图片描述

如上图,一段曲线上有两点 A \color{red}A A B \color{red}B B

  • α \color{red}\alpha α A \color{red}A A B \color{red}B B两个点的切线的转角,图中构成夹角 α \color{red}\alpha α分别为两个点切线;
  • β 1 \color{red}\beta_{1} β1 A \color{red}A A点切线与 x \color{red}x x方向的夹角;
  • β 2 \color{red}\beta_{2} β2 B \color{red}B B点切线与 x \color{red}x x方向的夹角;
  • O \color{red}O O为曲率圆的中心;

在离散曲线的每个点的切线与 x \color{red}x x方向的夹角 β \color{red}\beta β都是已知的,
那么对于曲线上每一个点,它相对于上一个点的切线转动角 α \color{red}\alpha α,都可以通过 α = β 2 − β 1 \color{red}\alpha=\beta_{2}-\beta_{1} α=β2β1,求解得到。

并且,可以知道, α = ∠ A O B \color{red}\alpha=\angle{AOB} α=AOB,即两点切线的转角等于曲率圆的两点和圆心构成角度。

由于曲线上 A \color{red}A A B \color{red}B B 两点很近,可把弧 A B \color{red}{AB} AB近似等于弦长 A B \color{red}{AB} AB,那么
根据曲率公式在这里插入图片描述可得到每一个点的曲率为:
k = α A B \color{red}k=\frac{\alpha}{AB} k=ABα
因为,弧长公式: s = α ∗ R \color{red}s=\alpha*R s=αR,得到: 1 R = α s \color{red}\frac{1}{R}=\frac{\alpha}{s} R1=sα,所以也可以简单理解为,曲率就是半径的倒数: k = 1 R \color{red}k=\frac{1}{R} k=R1

每一点的曲率kappa需要用到上一个点的倾角与该点自己的倾角,当曲线每个点的xy坐标知晓时,每个点的曲率都可以求解出来。
最后一个点的倾角不能求,就不用求,过滤掉该点。


3.求曲线上的每个点的曲率的步骤:

假设曲线共有n个点,分为两个大步骤:

1.先求曲线上每个点的倾角 θ \color{red}\theta θ
  • 求曲线第0个点倾角 θ \color{red}\theta θ,它由第0个点坐标 ( x 0 , y 0 ) \color{red}(x_0,y_0) (x0,y0)和第1个点的坐标 ( x 1 , y 1 ) \color{red}(x_1,y_1) (x1,y1)根据 t a n θ = Δ y Δ x = y 1 − y 0 x 1 − x 0 \color{red}tan{\theta}=\frac{\Delta{y}}{\Delta{x}}=\frac{y_1-y_0}{x_1-x_0} tanθ=ΔxΔy=x1x0y1y0近似得到;
  • 求曲线第1个点倾角 θ \color{red}\theta θ,它由第1个点和第2个点的坐标根据 t a n θ = Δ y Δ x \color{red}tan{\theta}=\frac{\Delta{y}}{\Delta{x}} tanθ=ΔxΔy近似得到;
  • 求曲线第n-1个点倾角 θ \color{red}\theta θ(他是求不出来的),它由第n-1个点和第n个点的坐标根据 t a n θ = Δ y Δ x \color{red}tan{\theta}=\frac{\Delta{y}}{\Delta{x}} tanθ=ΔxΔy近似得到,但是不存在第n个点,所以该点的倾角求不了,就不用求;
2.然后再求曲率kappa:
  • 求曲线第1个点的曲率 k 1 \color{red}k_1 k1:注意,不是第0个点的kappa(因为第0个点的kappa求不了),第一个点的切线转动角 α \color{red}\alpha α 由第0个点的倾角 θ 0 \color{red}\theta_0 θ0和第1个点的倾角 θ 1 \color{red}\theta_1 θ1根据 α = θ 1 − θ 0 \color{red}\alpha=\theta_1-\theta_0 α=θ1θ0近似得到,然后再使用 k = α A B \color{red}k=\frac{\alpha}{AB} k=ABα得出第一个点点的曲率 k 1 \color{red}k_1 k1
  • 求曲线第2个点的曲率 k 2 \color{red}k_2 k2:…
  • 求曲线第n-2个点的曲率 k 2 \color{red}k_2 k2:…

百度百科:曲率
离散点(离散序列)曲率计算那点事

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值